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Summary

This dissertation concerns the study of surface waves on a layer of fluid when a

current is present in the layer. In particular we derive a model that describes the

adaptation process when a given surface wave on still water meets at a certain point

a current. Both wave and current will then start to interact to reach a steady state

situation. For the typical task of a hydrodynamic laboratory to generate a desired

wave above a given current, this model can be used to design a method to predict the

properties of the waves and current before the adaptation, which is desired for the

practical generation process in the laboratory.

Restricting to small amplitude waves, for any current profile a harmonic wave of

given frequency will be adapted to the current if the dispersion relation is satisfied.

This dispersion relation is well known in the absence of currents, but is rather cumber-

some in the presence of depth-dependent nonlinear currents. To find the dispersion

relation in that case, one has to solve the equation for the vertical fluid velocity in the

layer, the so-called Rayleigh equation, which clearly depends on the given current.

In general, analytical solutions cannot be found, and the solution has to be approxi-

mated, leading to an approximate dispersion relation. In this thesis the approximation

is obtained using a variational characterization of the dispersion relation. Substitut-

ing approximate solutions of the Rayleigh equation in the governing functional then

leads to the approximate dispersion relation. We show that using the WKB approxi-

mations for solutions of the Rayleigh equation leads to a good approximate dispersion

relation for currents with nonlinear profiles.

Having formulated in this way the steady state situation of waves and currents,

we consider the problem when a wave and current meet at a certain position. At that

position the dispersion relation is not satisfied. Then an adaptation process sets in,

and a model is designed that describes a quasi-homogeneous spatial evolution to an

asymptotic state in which the changed wave and current are steady again.

To get a physical understanding of the adaptation process, we designed a low-

dimensional model using clearly interpretable variables. The natural variables to

describe the wave are the wave frequency, the wave length, the wave amplitude and

the mean-free surface elevation. To describe changes in the current, we choose to

use approximate parameterized profiles; changes in the current are then described by

changes of the parameters. The model for the adaptation process is then found by
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requiring several natural conservation properties to be satisfied. More specifically, we

make sure that at each position the continuity equation and the kinematic boundary

condition are satisfied exactly. Furthermore, we require that the mass, momentum,

and energy density fluxes are conserved. These conditions make it possible to define

the spatial changes of the parameters of the model, and predict the values of the

asymptotic steady state. The derived quasi-homogeneous process is an approximate

description, but we investigate a-priori estimates and show that the errors are small.

To validate the model, we compared model results with laboratory experiments that

can be found in the literature. Besides these, a series of tests was designed and con-

ducted in the offshore basin of MARIN, the Maritime Research Institute Netherlands,

Wageningen. Comparisons with all available flumes and basin experiments show that

in all cases the model correctly predicts the qualitative results of the interaction pro-

cess, and that for many experiments, including the one at MARIN, the predictions

are also quantitatively correct.
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Notations

In the list below, the notations used throughout this dissertation are listed in

alphabetic order of their first symbol. Besides a short description of the notation, the

section where the notation is introduced is given for further reference.

Notations starting with a Roman symbol

a amplitude of the free surface elevation [Section 2.3]

a0 amplitude of the current-free wave [Section 4.3.3]

a∞ the asymptotic value of a [Section 4.3.1]

A the canonical action functional for L [Section 3.2]

B the dual variational formulation for L [Section 3.2]

c phase velocity ω
k [Section 3.1]

cg group velocity dω
dk [Section 3.5]

E energy [Section 2.2]

f the characteristic function of the Rayleigh equation [Section 2.3]

F energy-flux [Section 2.2]

F∞ the constant for the energy-density flux [Section 4.3.1]

g gravitational constant [Section 2.1]

h the constant reference depth [Section 2.1]

I mass-flux [Section 2.2]

I0 the constant for the mass-density flux [Section 4.3.1]

k wave number [Section 2.3]

k0 wave number of the current-free wave [Section 4.3.3]

k∞ the asymptotic value of k [Section 4.3.1]

L the distance of adaptation [Section 5.2]

L variational formulation for the eigenvalue value problem [Section 3.2]

M momentum-flux [Section 2.2]

M0 the constant for the momentum-density flux [Section 4.3.1]

O big-O notation for infinitesimal asymptotic [Section 2.3]

p (fluid) pressure [Section 2.1]

p̂ amplitude function of the first-order pressure [Section 2.3]

p2 second-order mean pressure [Section 4.3.1]
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P the parameter set [Section 4.3.1]

P∞ the equilibrium point of the parameter dynamics [Section 4.3.1]

Pc parameter for the deformation of the current profile [Section 4.3.1]

P∞
c the asymptotic value of Pc 4.3.1]

qi interpolation function(s) in the Green-Naghdi theory for fluid sheets

[Section 4.4.3]

Rbottom error in the bottom boundary condition [Section 4.1]

RCE error in the continuity equation [Section 4.1]

Rdbc error in the dynamic boundary condition [Section 4.1]

RDR error in the dispersion relation [Section 4.2]

t time [Section 2.1]

RE1 error in the Euler equation for the horizontal momentum [Section 4.1]

RE2 error in the Euler equation for the vertical momentum [Section 4.1]

Rkbc error in the kinematic boundary condition [Section 4.1]

RRayleigh error in the Rayleigh equation [Section 4.2]

t time [Section 2.1]

u horizontal velocity [Section 2.1]

û amplitude function of the first-order horizontal velocity [Section 2.3]

U mean horizontal velocity (i.e., the current) [Section 2.1]

Uc profile of the initial (wave-free) current [Section 4.3.1]

Uchange the deformation of the current profile [Section 4.3.1]

w vertical velocity [Section 2.1]

ŵ amplitude function of the first-order vertical velocity [Section 2.3]

ŵa approximation for ŵ [Section 4.2]

ŵnorm normalized (approximate) solution of the Rayleigh equation [Section

4.3.2]

ŵtrial trial function that approximates ŵ [Section 3.2]

x horizontal coordinate [Section 2.1]

z vertical coordinate [Section 2.1]

Notations starting with a Greek symbol

α the constant for the wave volume [Section 4.3.2]

β the characteristic coeficient of the dispersion relation [Section 2.3]

δŵL the variational derivative of L with respect to ŵ [Section 3.2]

ε perturbation parameter [Section 2.3]

η free surface elevation [Section 2.1]

η0 the mean free surface elevation [Section 2.1]

η∞0 the asymptotic value of η0 [Section 4.3.1]

θ wave phase [Section 2.3]

θ0 initial wave phase [Section 2.3]
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Chapter 1

Introduction

1.1 A hydrodynamic laboratory

A concise definition of a hydrodynamic laboratory is given by Westhuis [76]:

”A hydrodynamic laboratory is a complex of facilities in which maritime struc-

tures are tested on a model scale.”

Before the actual construction, a maritime structure (ship, floating platform, fixed

platform, etc) must be tested in a proportionally scaled version of the specific sea

condition in which that structure will be operated. Hydrodynamic properties of the

structure must also be precisely calculated and investigated. Tests with scaled mod-

els under realistic conditions remain invaluable as an accurate and objective way to

quantify and demonstrate the behavior and performance of a ship or structure. For

accurately testing various design structures, a hydrodynamic laboratory must be able

to provide precise scaled-versions of various conditions of the real sea.

The research that leads to this dissertation was initiated by the Maritime Research

Institute Netherlands (MARIN), which is an independent research institute working

on model testing and design consultancy for ocean structures and ships. MARIN

provides commercial shipbuilders, owners, propeller manufacturers, naval architects

and the offshore industry with state-of-the-art performance predictions, design con-

sultancy, testing services and simulation and training consultancy. MARIN owns

seven different testing facilities: offshore (wave-current) basin, sea keeping and ma-

noeuvring basin, high speed basin, shallow water basin, cavitation tunnel, deep water

towing tank, and depressurized towing tank. Each facility is unique, and is meant to

test specific resistances/performances of different components of maritime structures.

The object of this research is the new offshore (wave-current) basin at MARIN,

which was opened in 2000 (Figure 1.1). The current-culverts are visible in Figure

1.2. It is equipped with advanced systems for generating waves, current and wind.

It is designed for testing models of offshore structures, which are fixed, moored, or
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1. Introduction

controlled by dynamic positioning. It is also used for other tests: offloading tests

in deep and shallow water, concept, installation and dredging tests, and free sailing

and captive sea keeping and manoeuvring tests in wave-current combinations and on

shallow water. Figure 1.3 shows a cross-section of the basin.

Figure 1.1: The new offshore (wave-current basin) of MARIN. The individually con-

trolled flaps of the wavemaker on the longitudinal side of the basin are clearly visible

on the left foreground. The other series of flaps are located at the farthest side.

Source: [43]

The horizontal dimension of the basin is 36 m × 45 m. The water depth of the

basin can be varied by means of an adjustable floor from 0.5 m up to a maximum

of 10.5 m. In addition, a pit with a diameter of 5 m and a depth of 20 m gives the

ability for deep water mooring tests up to 3000 m (prototype). The carriage can

control the movement of the model in both directions of the horizontal plane at a

speed up to 3.2 m / s. With an extra installed turnable arm, the system is able to

perform captive manoeuvring tests in shallow and deep water. The wave generators

can produce various wave types, as required in model testing. The wave generators

are positioned at two adjacent sides of the basin and consist of hinged flaps. Each

segment (width 40 cm) has its own driving motor, which is controlled separately.

The system is equipped with compensation of wave reflection from the model and the

wave absorbers. Opposite to this wave generator, passive wave absorbers are installed.

Current can be generated with various profiles (uniform, hurricane, parabolic, etc).

Divided over the water depth of 10.5 m, six layers of culverts, each equipped with a

2



1.1. A hydrodynamic laboratory

Figure 1.2: The wave-current basin of MARIN without water. The current culverts

are visible at the farthest side

pump, are installed. When generating a current, water is continuously injected from

one side of the basin, sucked from the opposite side, and recirculated by pipes outside

the basin, with a given constant discharge for each pipe, that maintains a specific

vertical profile of horizontal mass-transport in the basin. Figure 1.4 shows a picture

Figure 1.3: A cross-section of the new offshore basin. The six layers of culverts and

the liftable bottom are shown. Source: [44]
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1. Introduction

of these culverts. The basin is also equipped with a wind generator: a free moving

and positionable platform of 24 m width, equipped with electrical fans.

Figure 1.4: A picture of the six layers of culverts at a wavemaker side. Source: [44]

1.2 Aim and scope of this research

The objective of this research is to find a model that can be used for designing

a method to generate waves and currents in the offshore (wave-current) basin of

MARIN. The wind, which is also possible to be made in this basin, is not considered

in this research. The ideal aim is to be able to predict how current and wave have

to be prepared such that when the wavemaker is operated, a prescribed flow field

consisting of the specified current and the requested surface waves are generated in

the laboratory. Since the bottom in the new basin can be lifted, interest is specifically

also in the dependence on the depth. The difficulty of getting a requested wave and

current environment is due to the interaction between wave and current. In the

presence of a current, the wavemaker motion will produce waves that are different

from the waves produced (by the same wavemaker motion) in the absence of currents.

On the other hand, the interaction also changes the current profile, especially in the

region near the free surface. For the purpose of the laboratory, a model that can

predict changes of both wave and current is needed.

In [69] Thomas reported that his experiment shows that the wave deforms in an

interval of one wave length. It is also observed in the wave-current basin of MARIN

that the most visible deformation of the surface waves takes place in a short interaction

region around the position where the injected currents reach the free surface. In

order to verify this, a series of measurements were made in MARIN (test no. 17710-

1-OB (2002)). Explanations and quantitative analysis of these measurements are

reported by Margaretha [39] and Voluer [75]. Results and analysis of this experiment

will be reviewed in Chapter 6 of this dissertation. The analysis indicates that the
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1.3. Literature review

wavelength measured near the wavemakers (i.e. 2 m from the wavemakers) is very

different than the wavelength measured in the middle of the basin (i.e. at 17 m from

the wavemakers). Near the wavemaker, the measured wavelength is close to the one

predicted by the wave-only dispersion relation, and in the middle of the basin it agrees

with the theoretical dispersion relation of the spatially-steady wave-current interaction

(i.e. the homogeneous problem). It is also observed that the change in the wavelength

clearly corresponds to the observed spatial variation in the wave amplitude.

These observations motivate us to make a model which allows continuous and

simultaneous changes in the wave and current properties. In the research that led

to this dissertation, we developed an approach which describes the entrance effect of

wave and current that possibly occurs in a laboratory basin. Assumptions used in the

model are directly related to the situation in the hydrodynamic laboratory basin.

1.3 Literature review

The general equations of hydrodynamics were established by Daniel Bernoulli and

Leonhard Euler in the eighteenth century. The interaction of wave and current is a

particular subject in hydrodynamics. This problem has been studied extensively in

the last decades. Many papers on this problem investigate various cases of steady in-

teraction, i.e., when the current profile and the wave properties (e.g. wave amplitude,

wave length) do not change in space and time. In this dissertation, the equilibrium

condition arising from the steady wave-current interaction is defined as the homoge-

neous problem. Discussions on this problem are well documented by Peregrine [50],

Peregrine and Jonsson [51], Jonsson [28], Thomas and Klopman [70], and Dingemans

[17]. Discussions on the exact/approximate solutions of the ’wave part’ of the ve-

locities and/or their stability are given by, for example, Fenton [19], Dalrymple [12],

Thompson [71], Simmen and Saffman [58], Shrira [57], Baddour and Song [4], Swan

and James [66]. Numerical methods for calculating the solutions are given by Dal-

rymple [13], Thomas [69]. Approximations to the dispersion relation or the phase

velocity are given by Skop [59], Stewart and Joy [60], Kirby and Chen [32], Miles [46],

Margaretha et al. [40]. Practical applications of this knowledge are, for example,

application of a surface current as a hydraulic breakwater (Brevik [10] and Taylor

[68]) and separation of incident and reflected waves in wave-current flumes (Kyung

[34]).

Experiments showing effects of current on the free-surface waves and/or waves on

the current profile were reported by Bakker and van Doorn [5], Thomas [69], Kemp

and Simons [29] [30], Klopman [33], Suastika et al. [62], Swan [65], Swan et al. [67],

Margaretha [38] [39]. In the last experiment [39] an attempt was made to measure

the horizontal variation of the free surface elevation and the current in the basin of

MARIN. This was done by slowly moving the wave probes plus the current meter in

the direction opposite to the direction of the wave. Unfortunately slow movement of

the carriage induced a lot of vibration, thus the data measured during the movement

5



1. Introduction

are difficult to analyze. However, from the analysis of the data obtained during steady

measurements at fix places, we are able to draw conclusions on the global changes of

wave and current.

From all these experiments it is observed that when a regular wave interacts with

a (uniform/non uniform) following current, the wave amplitude becomes smaller and

the wave length becomes longer. But when a regular wave interacts with an adverse

current, the wave amplitude becomes higher and the wave length becomes shorter.

The increase/decrease of the wave amplitude and wave length clearly depend on the

strength and the profile of the current. On the other hand, the deformation of the

current profile clearly depends on the height and the frequency of the wave.

It is observed that when a uniform current flows in the direction of the wave

propagation then the current becomes weaker. But if a uniform current flows against

a wave then the current becomes stronger.

For the interaction of monochromatic waves and uniform current, a number of

models predicting changes on wave and/or current are found in the literature. We refer

here to the model proposed by Longuet-Higgins and Stewart [36] [37], Thomas [69],

Battjes [6], and Baddour and Song [3]. We also found models given by Boussinesq-

type equations, e.g. the one derived by Chen et al. [11]. All these models can be

classified into two classes: models that predict only the wave deformation (therefore

information on the current is required), and models that predict both changes of

wave and current. Each class can also be divided into two subclasses: models that

predict only the steady-state of the interaction (thus no spatial or temporal variation

is involved) and models that provide the slowly-varying variations of the wave-current

changes. The general theory for slowly-varying irrotational flow is given in the book

of Whitham [77]. Models assuming slowly-varying wave parameters are relevant for

describing phenomena in the ocean/sea, where nature develops waves and currents in

a large domain. But in a laboratory basin the length is limited and the wave-current

environment is made by ’abruptly’ entering waves into a current region, with the

aim that somewhere in the middle of the basin we obtain a requested wave-current

environment that is a scaled version of a specific position in the ocean. As remarked

by Thomas [69], although some models assuming slowly varying waves give good

prediction to experimental data, there is no exact justification on the validity of using

these models when predicting wave-current environment in a basin/flume of finite

length.

The interaction shows more complex patterns for currents with shearing profiles.

There are two types of sheared current which are mostly asked to be generated in

a hydrodynamic laboratory. Those currents are commonly called turbulent current

(Figure 1.5A) and hurricane current (Figure 1.5B). A turbulent current is a sheared

current which profile is almost linear near the free surface but is very curved near the

bottom. Thus, this type of current induces turbulence and mixing near the bottom.

This type of current was used in the experiments by Kemp and Simons [29] [30] and

Klopman [33]. A hurricane current, as reflected by its name, is a sheared current

6
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Figure 1.5: (A) a turbulent current; (B) a hurricane current

that is formed when a strong wind blows above a body of water. This current is

almost uniformly zero near the bottom but has a very strong shear near the surface.

Experiments on this type of current were conducted by Swan [65] and Swan et al.

[67].

It is reported in the literature that if a turbulent current flows in the direction of

the wave propagation then the strength of the current decreases near the surface but

slightly increases near the bottom. But if a turbulent current flows against a wave

then the strength of the current increases near the surface but slightly decreases near

the bottom.

Swan et al. [67] report that for favorable hurricane currents the wave motion pro-

duces a reduction in the magnitude of both the near-surface current and the vorticity

distribution. However in the adverse current cases the current change is markedly

different: the near-surface vorticity increases but there is no general tendency for the

change of the strength of the near-surface current.

For depth-dependent currents, a model for predicting deformation of the current

profile is given by Groeneweg and Klopman [23]. Also, Swan et al. [67] presented a

model to calculate deformation of a regular wave propagating on a depth-dependent

current. In the model proposed by Swan, the change of the current profile must be

known a priori. Using results from laboratory experiments, Swan et al. [67] demon-

strate the prediction of the models. The predicted wave amplitude and wave length

agree very well with the experiment. However, as remarked in that paper, in prac-

tice the change of the current profile is not known a priori. Therefore, for practical

application Swan et al. [67] suggest to couple their model with, for example, the

model explained by Groeneweg and Klopman [23]. This model follows the General-

7



1. Introduction

ized Lagrangian Mean (GLM) theory described by Andrews and McIntyre [2]. This

model shows qualitative and quantitative agreement with Klopman’s measurement

[33]. The paper by Groeneweg and Klopman is followed by the paper by Groeneweg

and Battjes [24]. In the latter paper, the model based on the GLM formulation is ap-

plied to investigate the validity of two fundamentally different explanations that give

a qualitative explanation of the possible physical processes that cause the deformation

of the current profile: the model proposed by Nielsen and You [48] that relies on a

local force balance in a plane in the streamwise direction and assumes that changes on

the current profile are purely caused by phenomena in the longitudinal direction; and

the model proposed by Dingemans et al. [16] that show that the secondary lateral

circulations, which are the result of the so-called wave-induced Craik-Leibovich (CL)

vortex force, are responsible for changes in the current profile. In their paper [24]

Groeneweg and Battjes show that the longitudinal component of the wave-induced

driving forces are much more dominant than the lateral components. The models

based on the GLM formulation [23] [24] are good models to predict and explain the

deformation of the current profile for the equilibrium condition (i.e., the homogeneous

problem). However, these models do not deal with the inverse problem that we in-

vestigate because the related current-free wave is not accommodated in these models.

The reason why we are interested to know the related current-free wave is because

when current is absent, reliable wavemaker theories are available (see for example the

book of Dean and Dalrymple [14] or the papers of Schäffer and Klopman [55] and

Schäffer and Steenberg [56]). Thus, in the absence of currents it is relatively easy to

get a desired wave in the basin. By generating a specific current-free wave, interaction

with the current changes both the wave and the current into the desired wave-current

combination.

1.4 Outline of the dissertation

The outline of the dissertation is as follows. Chapter 2 provides a mathematical

overview of the problem. This includes the governing equations, the relationships

between the governing equations and the conservation laws, description of the linear

homogeneous problem and its solutions, and the role of the dispersion relation. Open-

ing with a recapitulation of relevant background materials, the chapter ends with an

overview of the model on which the dissertation is focused.

Chapter 3 deals with a model to approximate the dispersion relation of the ho-

mogeneous problem. The model is derived through variational formulations of the

Rayleigh equation and the boundary conditions. The model is applicable for arbi-

trary depth-varying currents. The model is guaranteed to give a good approximation

provided that the so-called ’trial function’ is chosen carefully. The choice depends

on the current profile. By taking good trial functions, we show that the model gives

a better agreement to the exact dispersion relation than other models found in the

literature.

8



1.4. Outline of the dissertation

Chapter 4 describes the mathematical model that is essentially the focus of the

dissertation. In this chapter the model is described in detail, without prescribing any

specific current profile. Analysis of the accuracy of the model is given. A discussion

on the analogy and comparison with the method of Green-Naghdi [21] [22] [31], which

is somewhat related to the problem that we address, is given.

Basically an extension of Chapter 4, Chapter 5 deals with case studies for uniform

and linear currents. Predicted changes on both the wave properties and the current

profile, as well as the ’distance’ of adaptation, are reported and analyzed. Com-

parisons with various laboratory experiments on both uniform and depth-dependent

currents found in the literature are also reported.

As a part of the research, a laboratory experiment consisting of a series of tests was

designed and conducted in the Maritime Research Institute Netherlands (MARIN).

Set up of the experiment and the results are reported in Chapter 6. Analysis on the

results and possible applicability of the proposed model for the wave-current basin of

MARIN is also discussed in this chapter.

In Chapter 7 we present a discussion on the inverse problem and recommendations

for dealing with irregular waves and for extending the proposed method to get more

flexibility in describing the deformation of the current profile.
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Chapter 2

Mathematical Overview of the Problem

In this chapter, the governing equations and the basic conservation laws are

presented. Then the definition and properties of linear monochromatic solu-

tions of the homogeneous problem are given. This is followed by an overview

of the model to be derived.

2.1 The governing equations

The problem of wave-current interaction to be studied will be restricted to two-

dimensions. This means that the surface waves propagate without making an angle

to the current.

First we define the coordinate system of the problem. All physical quantities de-

pend only on one horizontal direction denoted by x and the vertical direction (positive

upwards) denoted by z. The free surface at rest (i.e. without waves and currents) is

taken at the value z = 0.

The free-surface is the part of water that directly touches the air. It is denoted

by z = η (x, t) , which gives the elevation of the free surface at point x for time t. For

periodic waves, we define the mean free-surface elevation as z = η
0
(x) given by the

time-average of η (x, t) over the wave period: η
0
(x) =

∫ T
0
η (x, t) dt/T. The motion of

the fluid is given by the components of velocity at every point of the water domain

and for any time. We denote by u (x, z, t) the velocity component in the (horizontal)

x−direction and by w (x, z, t) the one in the (vertical) z−direction. The pressure is

denoted by p (x, z, t) .

In the dissertation all variables are made dimensionless with the constant reference

depth h and the gravitational acceleration g. This means that lengths are scaled with

h, time is scaled with
√
h/g, velocities are scaled with

√
gh, and the pressure is scaled

with (ρgh) . In this work, the wavelength (or, wave number) is not used as one of the

scaling factors because it will become one of the varying variables in the model to be

derived. Throughout the dissertation, notations η, u, w, and p denote nondimensional

normalized variables. The flat bottom is given by z = −1.

11



2. Mathematical Overview of the Problem

Precise derivations and detailed descriptions of the equations for general surface

waves problems are given in Dingemans [17]. Wave-current interaction is governed

by the equations for inviscid-incompressible water flow with a free-surface at the top

boundary:

∂tη + uηx − w = 0 at z = η, (2.1)

p = 0 at z = η, (2.2)

∂tu+ u∂xu+ w∂zu+ ∂xp = 0, − 1 ≤ z ≤ η (2.3)

∂tw + u∂xw + w∂zw + ∂zp+ 1 = 0, − 1 ≤ z ≤ η (2.4)

∂xu+ ∂zw = 0, − 1 ≤ z ≤ η (2.5)

w = 0 at z = −1. (2.6)

Equations (2.1)-(2.6) are called the kinematic and the dynamic free surface boundary

conditions, the Euler equations, the continuity equation, and the bottom boundary

condition, respectively. An exact solution of these governing equations is given by

any steady current flowing below a flat surface (i.e. without any wave). For this case,

we have u = U (z) , η = 0, w is zero everywhere, and p is given by the hydrostatic

pressure p = −z. However, when a surface wave is present (i.e. ηx 6= 0 and ηt 6= 0),

in general exact solutions are not known.

2.2 Basic conservation laws

In the following we will present the conservation laws for the total mass, the total

momentum, and the total energy. First, we define the mass-flux I, the momentum-

flux M, the energy-flux F , and the energy E as follows:

I (x, t) ≡
∫ η

−1

udz, (2.7)

M (x, t) ≡
∫ η

−1

(
u2 + p

)
dz, (2.8)

F (x, t) ≡
∫ η

−1

u

(
1

2
u2 +

1

2
w2 + p+ z

)
dz, (2.9)

E (x, t) =

∫ η

−1

(
1

2

(
u2 + w2

)
+ p+ z

)
dz. (2.10)

Any set of exact solutions of the governing equations (2.1)-(2.6) satisfies the conser-

vation laws for mass, momentum, and energy:

∂tη + ∂xI = 0, (2.11)

∂tI + ∂xM = 0, (2.12)

∂tE + ∂xF = 0. (2.13)
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2.3. Linear monochromatic solutions of the homogeneous problem

Denote by 〈 〉 the time-average over a period T : 〈ϕ〉 = 1
T

∫ T
0 ϕdz. If the solutions

are periodic, then time-averaging (2.11 )-(2.13) over the period leads to

〈I〉 ≡ constant, (2.14)

〈M〉 ≡ constant, (2.15)

〈F〉 ≡ constant. (2.16)

2.3 Linear monochromatic solutions of the homogeneous problem

The homogeneous problem is defined as the equilibrium state of wave-current

interaction, at which the current profile and the wave properties do not change in

space and time. In the following we will show that for any linear monochromatic

wave, the homogeneous problem is characterized by a dispersion relation that relates

the wave frequency, the wave length, and the parameters of the current profile.

2.3.1 General Solution

We define linear monochromatic solutions of the homogeneous problem as η, u,

w, and p given in the form of

η = a cos θ + η
0
, (2.17)

u = U (z) + û (z) cos θ, (2.18)

w = ŵ (z) sin θ, (2.19)

p = −z + η
0
+ p̂ (z) cos θ, (2.20)

with a the wave amplitude and η
0

the mean free surface elevation. Here U (z) gives

the current profile, which may be arbitrary. The wave phase is given by

θ = kx− ωt+ θ0,

with ω the angular wave frequency, k the wave number, and θ0 an initial wave phase.

In the homogeneous problem a, k, η0, and θ0 are constant. We assume that

a = O (ε) , ε� 1. (2.21)

We also assume that û, ŵ, and p̂ are all O (ε). In (2.19) the amplitude function ŵ (z)

must satisfy the Rayleigh equation,

d2ŵ

dz2
− f (z) ŵ = 0, − 1 < z < η0, (2.22)

ŵ = 0 at z = −1. (2.23)

where

f (z) = k2 +
k d

2U
dz2

kU − ω
, (2.24)
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2. Mathematical Overview of the Problem

The Rayleigh equation is also coupled to the wave and current properties by the

requirement that
ŵ′

ŵ

∣∣∣∣
z=η

0

− β = 0, (2.25)

where ŵ′ = dŵ/dz and

β =

(
k2

(kU − ω)
2 +

k dUdz
kU − ω

)

z=η
0

. (2.26)

We call (2.25) the exact dispersion relation. Since the solution ŵ depends on the

current profile U (z) (see (2.22)), the quotient ŵ′

ŵ

∣∣∣
z=η

0

in (2.25) depends functionally

on U (z), k, and ω. Also, from (2.26) we see that β depends on U |z=η
0

, dU
dz

∣∣
z=η

0

,

k, and ω. In other words, for any given current profile U (z), (2.25) relates k and ω

nonlinearly.

For the solution ŵ to be unique, we must prescribe together with (2.23) its value

at the boundary; the kinematic boundary condition gives the relation with the wave

amplitude:

ŵ = a (ω − kU) at z = η
0
. (2.27)

Finally, (2.18) and (2.20) are completed with the following expressions for û and p̂:

û =
ŵ′

k
, (2.28)

p̂ =
1

k

(
ŵ
dU

dz
+ (ω − kU)

ŵ′

k

)
. (2.29)

If ŵ, û, p̂, and k satisfy (2.22)-(2.29), then the residues of the governing equations

(2.1)-(2.6) are all of higher order, O
(
ε2
)
. Then it is justified to call it a linear solution.

Remark 2.3.1.1 In the linear wave theory the dispersion relation does not depend

on the wave amplitude. However, linear wave theory does not mean that a linear

combination of two sets of linear solutions for η (x, t) , u (x, z, t) , w (x, z, t) , p (x, z, t)

is also a linear solution. This is because the nonlinearity of the dispersion relation in

terms of U implies that the current is nonlinearly related with the wave.

Throughout this dissertation we only consider the case that f (z) is continuous in

the interval [−1, η
0
] .

Proposition 2.3.1.1 When f (z) is continuous in the interval [−1, η0] (i.e. ω −
kU 6= 0 for all z ∈ [−1, η

0
] or, in other words, there is no critical point inside the

fluid layer (Drazin and Reid [18])), there exists a unique continuous solution ŵ (z)

valid in [−1, η
0
] .
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2.3. Linear monochromatic solutions of the homogeneous problem

To prove this, first of all the boundary-value problem is transformed into a second-

order initial value problem as in Appendix B.1. The rest of the proof is straightfor-

ward, by following the theorem given in page 291 of Pearson [49], in which the proof is

given in Brand [9]. Even though existence and uniqueness of solutions are guaranteed

provided that f (z) is continuous in [−1, η
0
], exact analytical solutions of (2.22)-(2.6)

can only be found for a few types of current profiles.

Summarizing, we conclude that if (for a specific current profile) we know the

solution of the Rayleigh equation (2.22), we have explicit expressions for the lin-

ear solutions (2.17)-(2.20) and exact analytical expression for the dispersion relation

(2.25). A special case where an exact solution of the Rayleigh equation exists is pre-

sented in the following subsection. In the beginning of Chapter 4 we will discuss the

case when an exact analytical solution is not known. We will show that there exist

approximate solutions of the Rayleigh equation and approximate wave number k such

that all residues of the governing equations (2.1)-(2.6) are O
(
ε2
)
, i.e. of the same

order as the error from linearization.

2.3.2 Linear currents

If U ′′ (z) = 0, i.e uniform or linear current, the exact solution of the Rayleigh

equation is given by

ŵ =
a
(
ω − k U |z=η

0

)

sinh (k (1 + η
0
))

sinh k (z + 1) , (2.30)

and with this the exact dispersion relation (2.25) is given by

(
ω − k U |z=η

0

+
1

2

dU

dz

∣∣∣∣
z=η

0

tanh k (1 + η
0
)

)2

=


1

4

(
dU

dz

)2
∣∣∣∣∣
z=η

0

tanh2 k (1 + η
0
) + k tanh k (1 + η

0
)


 . (2.31)

The dispersion relation for linear current (2.31) is also given in Dingemans [17].

For the special case that dU
dz = 0, i.e. uniform current U = U0 ≡ constant, and η0 = 0

(2.31) leads to

ω = kU0 + k

√
tanh k

k
. (2.32)

We define following current as a current which velocity in x−direction is nonnega-

tive for all z ∈ [−1, η
0
] and adverse current as a current which velocity is nonpositive

for all z ∈ [−1, η
0
]. Currents for which the velocity is partly positive and partly

negative, are called currents with backflow. In Figure 2.1 we plot (2.31) and (2.32)

for various following/adverse uniform and linear currents, taking η
0

= 0. Given a

value ω, observe that for cases with following currents the wave number k is smaller
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2. Mathematical Overview of the Problem

than the one of the current-free wave; while for cases with adverse currents the wave

number k is larger. Observe also that for each case with adverse current, there is

a value ω at which the group velocity dω
dk vanishes. At this point the wave action

(energy) transport velocity vanishes (Suastika [63]). In Figure 2.2 we give another

presentation of the dispersion relation (2.31), now for currents with backflow. We

take U (z) = U0 + sz. In Figure 2.2, we take ω = 1 and plot k as a function of U0

or s. The corresponding wave number of the current-free wave is given by the solid

straight line. We observe that the dispersion relations intersect this line. At the point

of intersection, the wave number k is the same. This means that the length of the

wave is not affected by the presence of these linear currents. A similar analysis that

determines the equivalent uniform current for a given depth-varying current is given

by Hedges and Lee [27].
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Figure 2.1: Figure (A): Plots of the dispersion relation 3.4, for various uniform cur-

rents. Figure (B): Plots of the dispersion relation 2.31, for various uniform and linear

currents
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Figure (A) and (B): k vs U0; Figure (C) and (D): k vs s.

2.3.3 Nonlinear Currents

For water of finite depth, exact analytical solutions of (2.22)-(2.27) as well as the

dispersion relation can only be found for a few types of current profiles (see [17]). If

the current profile is not linear, U ′′ (z) 6= 0, then in general we cannot find explicit

solutions of the Rayleigh equation. In this case the dispersion relation has to be

approximated. In Chapter 3 we present a method to approximate the dispersion

relation. We will show that the proposed approximation works well for cases with

nonlinear currents U (z).

2.4 Overview of the model

We have shown that the set of solutions of the linearized homogeneous problem

is characterized by the dispersion relation. Therefore before discussing the quasi-

homogeneous approximation, a variational characterization of the dispersion relation

will be presented in Chapter 3. This leads to an analytical expression that approxi-

mates the dispersion relation.
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2. Mathematical Overview of the Problem

In Chapters 4 and 5 we propose and validate a low dimensional model that de-

scribes the adaptation process of a surface water wave that encounters a depth de-

pendent current. Wave and current simultaneously adapt and reach an equilibrium

condition determined by the Rayleigh equation (2.22) and characterized by the dis-

persion relation (2.25) (or its approximation).

In the mathematical model presented in Chapter 4, the problem is approached by

seeing the interaction as an adaptation process of wave and current that takes place

spatially. In practice, the current is defined as the mean (time-average) horizontal

velocity. The process starts with a linear wave above a current free layer, that meets a

current at a certain position in the free surface. At this position the adaptation starts.

Before the start of the adaptation, the wavelength is determined from the wave-only

dispersion relation; and the spatial adaptation results to a wavelength which agrees

with the dispersion relation of steady wave-current interaction determined by the

solution of the Rayleigh equation.

In the model that we propose, we allow the fluid properties (i.e. the free surface el-

evation, the velocities, and the pressure) to be parameterized by four parameters that

may change quasi-homogeneously in one horizontal direction. The four parameters

that describe the wave-current environment in the model are the wave amplitude a,

the wave number k, the mean-free surface elevation η
0
, and one parameter to describe

the deformation of the current profile U (z) denoted by Pc. The parameter Pc gives,

for example, uniform or quadratic change in the current profile.

Changes of the parameters are determined by requiring that the kinematic free

surface boundary condition (2.1) and the continuity equation (2.5) are satisfied point-

wise, and that conservations of the total mass, momentum, and energy density-fluxes

(2.14)-(2.16) are satisfied. This can be stated differently: we derive the model by

considering the full Euler equations (2.3)-(2.4), and instead of requiring them to hold

pointwise, we project these equations in a number of specific directions. The direc-

tions are chosen such that changes in relevant physical quantities mentioned above

are modeled in a valid way. A-priori estimates for the errors are derived which show

that the errors introduced by the interaction are of higher order.
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Chapter 3

Variational Characterization of the Dispersion Relation

An approximate dispersion relation for water waves propagating on a depth-

dependent current is formulated without the necessity to solve the Rayleigh

equation. Taking particular trial functions, the approximate dispersion rela-

tion is close to the exact one. The approximate dispersion relation is expressed

analytically, from which approximations of certain quantities such as the phase

velocity, the group velocity, or the wave blocking criteria can be derived.

3.1 Introduction

In Chapter 2 we show that for the homogeneous problem of linear waves prop-

agating on a (steady) depth-varying current, the governing equations reduce to the

Rayleigh equation (or the inviscid Orr-Sommerfeld equation) (2.22), which is an ordi-

nary differential equation for the wave motion part of the vertical velocity. Kinematic

boundary conditions are derived for the impermeable bottom and free surface. The

dynamic boundary condition at the free surface contributes to an equation which can

be interpreted as a representation of the exact dispersion relation. It should be ob-

served that the dispersion relation is implicitly given by (2.25) once a nonzero solution

ŵ is found from (2.22)-(2.23). Although in the linear theory the dispersion relation is

not affected by the wave amplitude, it relates nonlinearly the wave and the current.

A dispersion relation gives the essential character of the homogeneous problem,

for each class of current profiles. The dispersion relation can be expressed analyt-

ically as long as analytical solutions of the Rayleigh equation are found. However,

exact analytical solutions can only be found for a few classes of current profile or

under the assumption that the wave is stationary (c = ω/k = 0) or the water depth

is infinite (h→ ∞). Reviews on this problem are given by Dingemans [17], Peregrine

[50], Thomas and Klopman [70]. A separate collection of analytical solutions of the

Rayleigh equation for some classes of mean flow (current) with shearing profiles is

given by Russell [53], in which the solutions are given in terms of transcendental

functions like the Gauss hypergeometric function.
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3. Variational Characterization of the Dispersion Relation

Analytical expressions of the dispersion relation are useful for deriving and study-

ing quantities such as the group velocity and the wave blocking criteria.

There are a number of analytical models which give approximations to the dis-

persion relation. Each model has advantages and disadvantages and a certain range

of applicability. Skop [59] and Kirby and Chen [32] present models for arbitrary

small current; a related expression for deep water has been found by Stewart [60].

In these models, the current is relatively small compared to the phase velocity. For

deep water, Shrira [57] constructed the exact solution of the boundary-value problem

in terms of an absolutely converging series in powers of a small parameter defined

as the ratio of the averaged mean flow vorticity gradient U
′

(z) and the product of a

characteristic wave number and wave frequency. A variational formulation for deep

water is presented by Miles [47]. The formulation is applied to analyze the stability of

exponential mean current profiles in deep water for two asymptotic cases, slow waves

and short waves under the condition that |c/U (0)| � 1. In another paper by Miles

[46], in which the water depth is finite, two variational integrals that provide an up-

per bound and a lower bound to the true value of the Froude number are formulated.

Although these formulations are made for currents which have zero gradient at the

surface (U
′

(0) = 0), they also hold when U ′ (0) 6= 0. In [46], two cases were studied:

the long wave approximation (k → 0) and stationary waves (c = 0).

For some practical applications, getting the corresponding wavenumber k from a

given wave frequency ω is more demanding than getting the solution of the Rayleigh

equation. Therefore, it is of practical interest to derive analytical or numerical models

in which the task of finding k is decoupled from that of finding the solution of the

Rayleigh equation. We can do this by using the variational formulation for the bound-

ary value problem as the ones given by Miles [46], [47]. We aim to find, for waves

on water of finite depth, analytical approximations of the dispersion relation that are

accurate for various current profiles and a large range of frequencies. The model is

derived through variational formulations of the governing boundary value problem.

In this way, the task of finding the dispersion relation becomes decoupled from that

of finding the solution of the boundary value problem. We characterize the disper-

sion relation as the critical value of the functional. By using an action functional,

we establish two functionals that give complementary approximations for the exact

dispersion relation. We point out that both approximations in this dual approach

are good if trial functions are carefully chosen. We collect several candidates for the

trial functions, give the range of applicability of each trial function, and demonstrate

the performance of the approximation. We show that for cases with nonlinear large

currents, the WKB approximated solution of the Rayleigh equation results to a good

approximation for the dispersion relation. We also derive a simple formula for the

case that the current profile is given by a piecewise linear function. In that case exact

analytical solutions exist, but they are lengthy and difficult to simplify (see Appendix

A). The piecewise linear profile is of practical interest since in most measurements

the current is measured point-wise. Provided that the vorticity jump at each kink
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3.2. Variational Characterization

is small, we present approximations of the dispersion relation for general piecewise

linear currents with N− kinks that is much simpler than the exact dispersion relation.

From the examples it appears that the approximations are good and get better and

better as the wave number increases. As an additional result, in Appendix B.3 we

show that an implementation of the finite-element method transforms the problem

into a generalized (linear or quadratic) eigenvalue problem, from which k or ω can be

calculated without calculating the solution of the Rayleigh problem.

3.2 Variational Characterization

3.2.1 Direct variational formulation

Here we only consider cases that the Rayleigh equation is non singular,

kU (z) 6= ω for all z ∈ [−1, η0] .

With the following analysis, we formulate a method to approximate the dispersion

relation for linear waves on finite depth without any restriction to the current profile

or magnitude. With this method, the task of finding the dispersion relation is decou-

pled from that of finding the vertical fluid velocity. First we provide a variational way

of representing the boundary value problem (2.22)-(2.27), and consequently the dis-

persion relation (2.25). Then we exploit this variational formulation to approximate

the dispersion relation.

Claim 3.2.1.1 Critical points (i.e. maximum/minimum/saddle points) of the

functional

L (ŵ) =
1

2

∫ η0

−1

[
(ŵ′)

2
+ f (z) ŵ2

]
dz − 1

2
βŵ (η0)

2
, (3.1)

for functions ŵ that satisfy ŵ (−1) = 0, satisfy the boundary value problem (2.22),

(2.23), (2.25). Moreover, at a critical point ŵ the functional L vanishes:

L (ŵ) = 0. (3.2)

To show this, observe that the directional derivative of the functional L in the

direction of a function v that satisfies v (−1) = 0 is given by

δŵL (ŵ; v) =
d

dε

∣∣∣∣
ε=0

L (ŵ + εv)

=

∫ η0

−1

[ŵ′v′ + f (z) ŵv] dz − βŵ (η0) v (η0)

= −
∫ η0

−1

[ŵ′′ − f (z) ŵ] vdz +
[
ŵ

′

(η0) − βŵ (η0)
]
v (η0) ,
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3. Variational Characterization of the Dispersion Relation

from which we conclude that a critical point ŵ satisfies the Euler-Lagrange equation

of the functional L, which is precisely the Rayleigh equation (2.22) and the boundary

condition (2.25). Since for a critical point ŵ

L (ŵ) = −1

2

∫ η0

−1

ŵ [ŵ′′ − f (z) ŵ]dz +

[
1

2
ŵ′ŵ

]

z=η0

− 1

2
βŵ (η0)

2 ,

the vanishing is an immediate consequence of (2.22) and (2.25).

Taken together, these results express that the vanishing of the functional L can

be seen as the formulation for the dispersion relation. To illustrate this, we give the

simplest example, the case of a uniform or linear current, U ′′ (z) = 0. Then the exact

solution to (2.22) and (2.23) is known to be

ŵ(z) = Γ sinhk (z + 1) , (3.3)

for arbitrary Γ. In case the current U is uniform, substitution of this into (3.2) gives

1

tanh k
− k

(kU − ω)
2 = 0.

which, after simplification, leads to the exact dispersion relation for linear waves on

a uniform current (Dingemans [17]; Peregrine [50]):

ω = kU +
√
k tanh k. (3.4)

In case the current is linear, U (z) = U0 + sz, substitution of (3.3) in (3.2) gives a

relation which is equivalent to (2.31).

3.2.2 Dual variational formulation

Now we present another variational formulation that enables us to find the dual ap-

proximation for the dispersion relation. The method is essentially based on a Legendre

transformation and is well known in Classical Mechanics to describe a transformation

from a Lagrangian description to a Hamiltonian description.

One way to motivate this is to rewrite the second order boundary value prob-

lem (BVP) (2.22), (2.23), (2.25) in an equivalent way as a system of two first-order

differential equations (the ‘Hamilton’ equations):

ŵ
′ − ψ = 0, (3.5)

−ψ′

+ fŵ = 0, (3.6)

with the boundary conditions:

ŵ(−1) = 0 and ψ (η0) − βŵ (η0) = 0. (3.7)
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3.3. The approximate dispersion relation

Then it can be observed that this system for (ŵ, ψ) is the critical point of the

functional (the canonical action functional A (ψ, ŵ) in Classical Mechanics for the

’position’ and ’momentum’ variables ŵ and ψ respectively):

A (ψ, ŵ) =

∫ η0

−1

(
ψŵ

′ − 1

2
ψ2 +

1

2
fŵ2

)
dz − 1

2
βŵ (η0)

2 .

The relation between the original Lagrangian functional L (ŵ) and this action func-

tional is actually given by

L (ŵ) = sup
ψ

A (ψ, ŵ) .

Now, because of the fact that the problem is quadratic, we can continue and eliminate

the variable ŵ in favor of the variable ψ. In fact, defining the dual functional

B (ψ) = crit
ŵ

A (ψ, ŵ) ,

the elimination of ŵ leads to the explicit expression

B (ψ) = − 1

2

∫ η0

−1

(
1

f

(
ψ

′

)2

+ ψ2

)
dz +

1

2β
ψ (η0)

2 .

The critical point of this functional satisfies

− d

dz

(
ψ′

f

)
+ ψ = 0, ψ′(−1) = 0, − ψ′(η0)

f(η0)
+
ψ(η0)

β
= 0

which is the same result as would have been found by eliminating ŵ from the Hamilton

equations (3.5)-(3.7) above.

The relation between the critical points of the functionals can be described as

crit
ŵ

L (ŵ) = crit
ŵ

crit
ψ

A (ψ, ŵ) = crit
ψ

crit
ŵ

A (ψ, ŵ) ≡ crit
ψ

B (ψ) .

In case the critical points are related by the Legendre transformation, the critical

value of B of course also vanishes as is the case for L. Also, when the function that

is the conjugate of (3.3) given by

ψ = Γk cosh (k (z + 1)) (3.8)

is substituted into B (ψ) = 0 we get indeed (3.4) for uniform current and (2.31) for

linear current.

3.3 The approximate dispersion relation

For a current with a nonlinear profile it is in general not possible to find analytic

solutions of the Rayleigh equation, and therefore of the exact dispersion relation.

If an approximate solution of the Rayleigh equation is taken for the exact vertical
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3. Variational Characterization of the Dispersion Relation

velocity amplitude, say a trial function ŵtrial (z) , which satisfies ŵtrial(−1) = 0, then

an approximate dispersion relation is given by the relation

L (ŵtrial) = 0. (3.9)

We can formulate this in a somewhat different way as follows. Define the functional

D (ŵ) that is homogeneous of degree zero:

D (ŵ) =
1

ŵ (η
0
)
2

∫ η
0

−1

[
(ŵ′)

2
+ f (z) ŵ2

]
dz. (3.10)

Then L (ŵ) =
ŵ(η

0
)2

2 [D (ŵ) − β] so the exact dispersion relation is given by

D (ŵ) = β.

Realising that both expressions are functions of ω and k, the equality can be viewed

as the intersection of two surfaces, the ‘Rayleigh-surface’ (ω, k) → D (ŵ), and the

‘β-surface’ (ω, k) → β, with the dispersion relation as intersection curve.

Taking a trial function ŵtrial, the approximate dispersion relation (3.9) can then

be written as the intersection of the β-surface with the approximate Rayleigh surface

(ω, k) → D (ŵtrial):

D (ŵtrial) = β; (3.11)

this is illustrated in Figure (3.1).

Remark 3.3.0.1 It is important to realize that the ’quality’ of the approximate

dispersion relation is essentially better than the quality with which the Rayleigh equa-

tion is solved. Indeed, from the fact that for the exact dispersion relation the functional

derivative vanishes, the error in the value of the functional is quadratic with respect

to the error in the trial function from the exact solution.

We use the functional B (ψ) to derive the second approximation for the dispersion

relation,

B(ψtrial) = 0, (3.12)

taking a suitable trial function ψtrial.

Define R as

R (ψ) = ψ (η0)
2

/∫ η0

−1

(
1

f

(
ψ

′

)2

+ ψ2

)
dz (3.13)

then B (ψ) =
ψ(η0)

2

2

[
1
β − 1

R(ψ)

]
and the approximate dispersion relation (3.12) can

be written like:

R(ψtrial) − β (k, ω) = 0, (3.14)

which again can be interpreted as the intersection of the β-surface with the approxi-

mate ‘dual Rayleigh-surface’ (ω, k) → R(ψtrial) (see Figure 3.1).
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3.3. The approximate dispersion relation

Figure 3.1: Fig.(A): The exact and approximate dispersion relations for linear current

given by (3.15a) (shown in the inset). The solid line represents the exact dispersion

relation, the dotted line is approximation (3.11) and the dashed line is approximation

(3.14). Trial functions are given by (3.16a) and (3.16b).

Fig.(B): Differences from the exact solution, line styles are the same as for Fig.(A).

Fig.(C): The β-surface (the dark surface), the approximate Rayleigh surface D(ŵtrial)

(the upper light surface), the dual Rayleigh surface R(ψtrial) (the lower light sur-

face), and the exact Rayleigh surface D(ŵexact) (the surface in between D(ŵtrial) and

R(ψtrial)).

Fig.(D): Figure (C) shown from the top. The dispersion relations in Figure (A) are

shown as the three borders of areas with different grey color.

3.3.1 The trial functions

The quality of the approximate dispersion relation depends on the choice of the

trial function. In table below we list several trial functions and the condition of

applicability of each of them.
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3. Variational Characterization of the Dispersion Relation

Trial function Application

ŵtrial =sinh(k (z + 1)) weakly nonlinear current U ′′ (z) � 1 or short

waves k → ∞ (Miles [46]).

ŵtrial =exp
(
(z − η0)

√
k2 + 1/d2

)
(Miles [47]) deep water where U (z) =

U0 exp (z/d) under the assumption that

|c/U0| � 1.

ŵtrial = U (z)
[
1 − k2

∫ η0
z

P
U2 dz

]
(Miles [46]) stationary long-wave (c = 0 and

k → 0).

ŵtrial = U (z) R(z)
R(1) , where

R (z) =
∫ z
−1

dz
(U−c)2

([46]) long wave approximation for running

waves (c 6= 0, k → 0)

ŵtrial (z) =
sinh

∫
z
−1

√
f(ζ)dζ

f(z)1/4

(WKB approximation)

nonlinear current U ′′ (z) � 0, provided that

f (z) 6= 0 at any z ∈ [−1, η0] .

3.3.2 Bounds for the exact dispersion relation

Given ŵtrial and ψtrial, by investigating the monotonicity of the functionals with

respect to ω we can analyze whether each approximation provides an upper or a

lower bound to the exact dispersion relation (in the k − ω plane). Note that the

word ’bound’ here has a different meaning than the one used by Miles [46] in which

the word ’bound’ refers to the correct value of the functionals (which is the Froude

number F = U (η0) /
√
gh). In the present discussion it refers to the correct value of

the wave frequency, ω = Ω (k).

Under the condition that ŵtrial does not depend on ω and ω < k · min
−1≤z≤η

0

U (z)

or ω > k · max
−1≤z≤η0

U (z) , it follows that when U ′′ (z) is sign-definite over the whole

depth, D(ŵtrial) depends monotonically on ω :

if U
′′

> 0 for all z then D (ŵ) monotonically increases in ω,

if U
′′

< 0 for all z then D (ŵ) monotonically decreases in ω,

From the expression (2.26) for β we calculate dβ
dω and observe that when ω >

k · max
−1≤z≤η

0

U (z) ,

∂β

∂ω
> 0 if (2 + U (η0)U

′ (η0)) k < U ′ (η0)ω,

∂β

∂ω
< 0 if (2 + U (η0)U

′ (η0)) k > U ′ (η0)ω,
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3.3. The approximate dispersion relation

and reversed inequalities when ω < k min
−1≤z≤η0

(U (z)) .

From this, when ŵtrial does not depend on ω and ω = Ω(k) is the exact dispersion

relation and L (ŵtrial) increases with ω, the approximation L (ŵtrial) = 0 leads to

a lower bound for Ω(k) if L (ŵtrial)|Ω(k),k > 0 and to an upper bound for Ω (k) if

L (ŵtrial)|Ω(k),k < 0; the same holds true for B.

To illustrate this, take η
0

= 0 and consider as an example four different current

profiles:

U(z) = 0.03 (z + 1) (3.15a)

U (z) = 0.03 exp (z) (3.15b)

U (z) =

{
0.05z + 0.065

0.5z + 0.2

, − 1 ≤ z < −0.3

−0.3 ≤ z ≤ 0
, (3.15c)

U (z) =

{
−0.05z − 0.065

−0.5z − 0.2

, − 1 ≤ z < −0.3

−0.3 ≤ z ≤ 0
. (3.15d)

In Figure 3.2 we present monotonicity for F (ŵtrial) and B (ψtrial) , for the current

profiles (3.15a)-(3.15d) given above. In Figure 3.2(a) we take as trial functions

ŵtrial = exp (k (z + 1)) − 1, (3.16a)

ψtrial = exp (k (z + 1)) , (3.16b)

while for Figure 3.2(b, c, d), we take (3.3) and (3.8). Functions (3.3) and (3.8) are

the asymptotic solutions of the Rayleigh equation for large k and are exact solutions

if the current is linear. In Figure 3.2(a, d), L (ŵtrial)|Ω(k),k > 0, B (ŵtrial)|Ω(k),k < 0,

and inside the shaded area both L (ŵtrial)|ω,k and B (ŵtrial)|ω,k increase with ω. This

explains why the approximation (3.9) gives a lower bound and (3.12) gives an upper

bound to the exact dispersion relation. With a similar reasoning, the result given in

Figure 3.2(c), where both approximations give lower bounds to the exact dispersion

relation, is explained.

From the results presented in Figure 3.2(c) and Figure 3.3, we observe that the

exact dispersion relation ωexact (k) is not always flanked by the two approximations.

We can take as the final approximation the average value of the two approximations,

ωmid (k). In any case, when not knowing the exact value and its distance to approxi-

mations (3.9) and (3.12), it is safer to use the average value ωmid than either (3.9) or

(3.12) separately.
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Figure 3.2: The four approximations for current profiles given by (3.15a )-(3.15d). The

exact dispersion relation is given by the dashed line. Inside the shaded areas, L (ŵtrial)

and B (ŵtrial) increase monotonically. In figures (a, d), L (ŵtrial)|Ω(k),k > 0 and

B (ŵtrial)|Ω(k),k < 0; and in figure (c) L (ŵtrial)|Ω(k),k > 0 and B (ŵtrial)|Ω(k),k > 0.

3.4 Some examples

3.4.1 General formula for piecewise linear currents

When a current profile is approximated by a piecewise linear function

U (z) =





s0 (z − η0) + U0 z1 < z ≤ η0,

s1 (z − z1) + U1 z2 < z ≤ z1,

s2 (z − z2) + U2 z3 < z ≤ z2,
...

...

sN (z − zN) + UN −1 ≤ z ≤ zN ,

, (3.17)

where U (z) is continuous at each kink, it is known that exact analytical solutions

can be derived by satisfying 2N matching conditions (see Appendix A). However, the

resulting dispersion relations are lengthy and difficult to simplify.

If the ’vorticity jump’ at each kink is small, simple expressions which approximate

the dispersion relations are derived by using (2.20) and (3.12), taking as trial functions

ŵtrial = sinh (k (z + 1)) and ψtrial = cosh (k (z + 1)) . The approximate dispersion
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Figure 3.3: Approximations (3.9) and (3.12) when the current profile is given by

piecewise linear functions as shown in the insets. The trial functions are given by (3.3)

and (3.8). Approximation (3.9) is presented by the dotted line, and approximation

(3.12) is presented by the dashed line. The exact dispersion relation is given by the

solid line

relations are given by

cosh(k (1 + η0)) sinh(k (1 + η0)) +

(
N∑

i=1

si − si−1

kUi − ω
sinh2 (k (zi + 1))

)

−
(

k2

(kU0 − ω)2
+

ks0
kU0 − ω

)
sinh2 (k (1 + η0)) = 0, (3.18)

and

cosh(k (1 + η0)) sinh(k (1 + η0)) −
(kU0 − ω)

2
cosh2 (k (1 + η0))

k + s0 (kU0 − ω)
= 0. (3.19)

An example for a single kink, where N = 1 is given in Figure 3.3, which shows

the approximations (3.9) and (3.12) for currents given by piecewise-linear functions

(3.15c) and (3.15d), taking as trial functions (3.3) and (3.8) and η0 = 0. The approx-

imate dispersion relations (3.18) and (3.19) are compared with the exact dispersion

29



3. Variational Characterization of the Dispersion Relation

relation, which is given by (A.4) in Appendix A. Although the vorticity jump at the

kink is as large as 0.45, we observe that (3.18) and (3.19) give good approximations

for the dispersion relation. For multiple kinks (N > 1) expressions (3.18) and (3.19)

are easier to analyze than the exact, but intricate, dispersion relation. Because of

their simplicity approximations (3.18) and (3.19) can be used (for example) to derive

approximate analytical expressions for the group velocities.

3.4.2 Approximation using the irrotational-wave solution

In Figure 3.4, for η0 = 0 we present the error from the approximate dispersion rela-

tion (3.9) when the current profile is given by U (z) = − exp (αz) (adverse exponential

current). As a trial function we take (3.3). As the current profile is nonlinear, the

exact solution and the exact dispersion relation plotted in this Chapter are calculated

numerically by the method given in (Fenton [19]) and (Thomas [69]).
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Figure 3.4: The error of the approximate dispersion relation with the choice (3.3) as

the trial function when the current profile is given by U (z) = − exp (αz) for various

value of α. In all pictures the solid line, the dashed line, and the dotted line are related

to α = 1, α = 0.8, and α = 0.3, respectively. In the lower picture, with the same line

coding, the exact dispersion relations are plotted.

In Figure 3.5 we present the error in ŵ for k = 1.5. As expected, we observe that
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3.4. Some examples

when using ŵtrial = sinh (k (z + 1)) the less curved the current profile the better the

approximation. From Figure 3.4 and Figure 3.5 we observe that the error to the

dispersion relation is quadratic with respect to error in ŵ, in agreement with Remark

3.3.0.1.
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Figure 3.5: Related to the results presented in the previous figure: The error in ŵ if

ŵ is given by (3.3) and the exact (numerical) solution for ŵ for k = 1.5. The current

profile is given by U (z) = − exp (αz) for various value of α. The solid line: α = 1,

the dashed line: α = 0.8, the dotted line: α = 0.3, and the (thin) dashed-dotted line

is ŵtrial. In the lower picture, the exact vertical velocities are plotted.

3.4.3 Approximation using the WKB approximate solution

To improve the approximation in such a way that the trial function depends on

the curvature of the current, we choose the following trial function which is motivated

by the WKB approximative solution of an equation of the form uzz + n (σz)
2
u = 0,

with a slowly varying inhomogeneous function n (σz) with σ small (see the paper of

van Groesen [25] and Vainberg [74]). When n (σz)
2

= −f (z) = −
(
k2 + kU ′′(z)

kU(z)−ω

)
,

in which σ is the parameter related to the curvature of the current, this equation is
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3. Variational Characterization of the Dispersion Relation

the Rayleigh equation. For f (z) ≥ 0 we take

ŵtrial (z) = A (z) sinh

∫ z

−1

√
f (ζ)dζ, (3.20)

and for f (z) ≤ 0 we take

ŵtrial (z) = A (z) sin

∫ z

−1

√
−f (ζ)dζ,

where

A (z) =
Γ

|f (z)|1/4
, (3.21)

for an arbitrary Γ. When the current profile is given by U (z) = − exp (5z) error of

the present model, taking (3.20), is given in Figure 3.6.
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Figure 3.6: Error from approximation, when U (z) = − exp (5z) , using (3.20) as the

trial function. The dotted line is the error from the present model, and the solid line

is the error from the Kirby and Chen model. The current profile is given in the inset

and the resulting dispersion relation is given in the lower picture.

For a comparison, in Figure 3.6 we plot also the error from the Kirby and Chen’s

model. We observe that for very long waves (k → 0) the present model is slightly

worse than the Kirby and Chen’s model but the approximation gets better and better
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3.5. The group velocity

as the wave number increases (i.e. for k > 0.5). Also for a comparison, the exact

velocity ŵ (z) and the trial functions (3.3) and (3.20) are plotted in Figure 3.7, for

k = 1.3.
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Figure 3.7: The exact solution for ŵ (solid line) compared to the trial functions (3.3)

(dashed line) and (3.20) (dotted line) for current given by U (z) = − exp (5z).

For cases when kU ′′(z)
kU(z)−ω is small compared to k2 we can take a simpler trial function

that is an approximation of (3.20) by taking the first order terms of the Taylor series

expansions of 1
f(z)1/4 and

√
f (z). This leads to:

ŵtrial = A (z) sinh

(
k (z + 1) +

∫ z

−1

1

2

kU ′′ (ζ)

kU (ζ) − ω
dζ

)
, (3.22)

where

A (z) = Γ

(
1√
k
− 1

4
√
k

kU ′′ (z)

kU (z) − ω

)
.

In case of a current profile given by U (z) = Us cos
(
π
2 z
)
, the error from the Kirby

and Chen’s model [32] is presented in Figure 5b of their paper. For a comparison,

in Figure 3.8 we show the error in the phase velocity for k = 3, for the same cosine

profile. In this figure we plot the error versus Us. We observe that taking (3.22) the

present model performs better.

From this observation, we see that a careful selection of the trial function gives a

better approximation.

3.5 The group velocity

Analytical models are useful for deriving approximations for certain quantities

such as the group velocity and the wave blocking criteria. These results can also be
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Figure 3.8: Error in the phase velocity ω
k vs Us. Here k = 3 and U (z) = Us cos

(
π
2 z
)
.

The error resulting from taking (3.22) is presented by the dotted line (very close to

the Us−axis); the error resulting from taking (3.3) is given by the dashed line; and

the error from the Kirby and Chen’s model is given by the solid line.

applied in models for calculating reflected waves in the the presence of depth-varying

currents (i.e., modifications of models given by Kyung et al. [34] and Suryanto [64].

Below we will present the approximate group velocity and wave blocking criteria

derived from the analytical model presented in this chapter.

Some wave-current interaction models (for example the ones used for coastal waves

models) require computation of the group velocity cg = dω
dk for many different current

profiles and wave lengths. By using models which give analytical (implicit/explicit)

expressions of ω (k) , we can directly calculate the corresponding group velocity for

a given k = k0 (by firstly calculating ω (k0)). This is more efficient than calculating
dω
dk by using a numerical solver of the exact dispersion relation, by which we have to

calculate also the values of ω at some neighboring points of k = k0.

Observe that the dispersion relation ω (k) is given implicitly by the present model.
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3.6. Concluding remarks

The expression for the group velocity dω
dk can be derived as follow:

0 =
dL (k, ω (k) , ŵtrial (ω (k) , k))

dk

=

[〈
δŵL,

∂ŵ

∂k

〉
+
∂L
∂k

+
dω

dk

{〈
δŵL,

∂ŵ

∂ω

〉
+
∂L
∂ω

}]

ŵ=ŵtrial

which gives

dω

dk
=

−
[〈
δŵL, ∂ŵ∂k

〉
+ ∂L

∂k

]
ŵ=ŵtrial[〈

δŵL, ∂ŵ∂ω
〉

+ ∂L
∂ω

]
ŵ=ŵtrial

, (3.23)

where we define

〈δŵL, ϕ〉 = −1

2

∫ η0

−1

(ŵ′′ − f (z) ŵ)ϕdz +
ϕ (η0)

2
[ŵ′ (η0) − βŵ (η0)] ,

which is equal to zero only if ŵ is the exact solution of the boundary value problem.

Relation (3.23) gives a direct approximation to the group velocity cg = dω
dk . Havelock

[26] and Lighthill [35] show that cg is also the velocity of the propagation of the

energy. The condition in which cg = 0 is a special condition that states that the wave

energy cannot propagate further. This may happen when waves propagate against

an adverse current. From (3.23), we can approximate the criteria for wave blocking,

which is the relation between ω, k, and U (z) for which dω
dk = 0. In this approximation,

the wave-blocking criteria is given by
〈
δŵL,

∂ŵ

∂k

〉

ŵ=ŵtrial

= − ∂L
∂k

∣∣∣∣
ŵ=ŵtrial

. (3.24)

The integration in (3.24) can be carried out numerically. From (3.24) we can approx-

imate the pair (ω, k) that results to the stopping of the propagation of the energy,

when the current U (z) is given.

3.6 Concluding remarks

We have developed a method to derive an analytical expression that approximates

the dispersion relation, without the need to solve the Rayleigh equation. Two models

are derived through complementary variational formulations of the governing bound-

ary value problem. These approximate analytical expressions are given in integral

form. When the primitives of the integrands cannot be found analytically, the ap-

proximate dispersion relations are obtained by calculating the integrals numerically.

Approximate dispersion relations for waves propagating on arbitrary current have

been formulated. The performance of both approximations depend on the trial func-

tions that are chosen. For short waves or for weakly nonlinear current, taking the

asymptotic solution for large k (3.3) and the corresponding conjugate solution (3.8)

as trial functions, gives good approximations. As the final approximation we can take

the average value of the two approximations.
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3. Variational Characterization of the Dispersion Relation

The WKB solution of the Rayleigh equation gives a good approximate dispersion

relation for waves on nonlinear large currents.

A preliminary investigation on the properties of f (z) for the chosen class of current

profile is necessary before deciding which trial function to take. From numerical

experiment using different current profiles (avoiding cases that critical points, z∗ at

which kU (z∗)−ω = 0, exist) we observe that when the current profile is almost linear,

max
z∈[−1,η0]

U
′′

(z) < 1, (3.25)

taking (3.3) gives good a approximation. But when the current profile is not linear

max
z∈[−1,η0]

U
′′

(z) � 0, (3.26)

we have to improve the trial function. The improvement depends on whether we

consider long waves or short waves (k � 1 or k � 0); the sign of U (z); and the sign

of U
′′

(z) . In general when f (z) is sign-definite and when critical points do not exist,

trial functions (3.20) or (3.22) give good approximations for short waves (k � 0).

The observation that the approximation is good throughout the wave-number

space, and is better for high wave-numbers, is important for estimation of the current

profile from measurements by remote-sensing, where the dispersion relationship can

be estimated from radar measurements in time and space. High wave-numbers can

be used to estimate the near surface velocity and low wave-numbers to estimate the

current profile at greater depth.

The approximate dispersion relation presented here will be used to characterize

the equilibrium of the parameter dynamics in the model to follow.
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Chapter 4

A Low-Dimensional Model for the Spatial Adaptation

of Waves Encountering a Current

We propose and validate a low dimensional model that describes the adap-

tation process when a surface water wave meets a current. Changes in wave

length, wave amplitude, mean surface elevation, and change in a paramet-

ric representation of the current profile are described in a quasi-homogeneous

way. This quasi-homogeneous approximation is based on satisfying the basic

conservation laws and the kinematic free-surface boundary condition. Wave

and current simultaneously adapt in order to reach an equilibrium condition

characterized by the wave-current dispersion relation derived from the solution

of the Rayleigh equation. We describe the model and give theoretical error

estimates.

4.1 Introduction

This work deals with wave-current interaction with particular emphasis on sit-

uations as they appear in hydrodynamic laboratories. There waves are generated

by wave flaps, and currents are injected from one side of the basin. The water is

re-circulated with a given constant discharge that maintains a specific horizontal

mass-transport in the basin. The injected currents meet the waves at the free surface

at a certain position where the adaptation of the interacting waves and current sets

in. The model presented here is practical for the laboratory purpose, i.e. to generate

wave and current environments requested for testing models of ships or other struc-

tures. The difficulty of getting a requested wave and current environment is due to the

interaction between wave and current. In the presence of a current, the wave maker

motion will produce waves that are different from the waves produced (by the same

wavemaker motion) in the absence of currents. Kemp and Simons [29] [30], Klopman

[33], and Swan et al. [67] conducted experiments that show that the interaction also

changes the current profile, especially in the region near the free surface.
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4. A Low-Dimensional Model for Waves Encountering a Current

A number of models for fully-established wave-current interaction (i.e. when wave

and current properties do not change in space and time) have been given in a number

of review articles, e.g. Jonsson [28], Peregrine [50], Thomas and Klopman [70]. For

uniform current, Baddour and Song [3] and Longuet-Higgins and Stewart [36] present

models that predict the steady-state of the interaction, using given initial situations

describing pure waves and pure current. In these models, the spatial/temporal dy-

namics describing the adaptation of wave and current is not described.

For uniform currents, a number of models assuming slowly-varying wave parame-

ters are found in the literature, such as the models given by Boussinesq-type equations,

e.g., Chen et al. [11]. Other models in this class are given by Longuet-Higgins and

Stewart [37] and Peregrine [50], which describe the slow deformation of waves when

propagating on given, slowly-varying uniform currents. Models assuming slowly-

varying wave parameters are relevant for describing phenomena in the ocean/sea,

where wave and current interaction takes place in an long open domain. This is not

the case for a laboratory basin, which has limited length. In a laboratory basin as in

MARIN (the Maritime Research Institute Netherlands) wave-current environment is

made by entering waves into a current region, and it is observed that the most visible

deformation of the surface waves takes place in a short interaction region.

Swan et al. [67] present a model to calculate the deformation of a regular wave

propagating on a depth-dependent current. In that model, the change of the current

profile must be known a-priory. Using results from laboratory experiments, Swan et

al. demonstrate the validity of the prediction of the model, i.e. the wave amplitude

and the wave length. However, as remarked in that paper, in practice the change of the

current profile is not known a priori. Therefore, for practical application Swan et al.

suggest to couple their model with, for example, the model presented by Groeneweg

and Klopman [23].

For depth-dependent current, good models for predicting and explaining defor-

mation of the current profile for the equilibrium condition (i.e., the homogeneous

problem) have been given by Groeneweg and Klopman [23] for 1D flow and by Groe-

neweg and Battjes [24] for 2D flow. However, these models do not deal with the

inverse problem that we investigate because the related current-free wave is not ac-

commodated in these models. The reason why we are interested to know the related

current-free wave is because when current is absent, reliable wavemaker theories are

available, e.g. in Dean and Dalrymple [14], Schäffer [54], Schäffer and Klopman [55],

Schäffer and Steenberg [56]. Thus, in the absence of currents it is relatively easy to

get a desired wave in the basin. By generating a specific current-free wave, interaction

with the current changes both the wave and the current into the desired wave-current

combination.

For the problem addressed in this dissertation we need a model that can predict

both changes in the waves and current. We approach the problem by seeing the

interaction as a spatial adaptation process of wave and current. It starts with a

linear wave above a current free layer, that meets at a certain position a current
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4.1. Introduction

underneath. Before and after entering the current zone, the wavelength is determined

by two different dispersion relations, thus the wavelength can change significantly. A

set of measurements at MARIN indicates that before and after the adaptation region,

the wave length is significantly different; a quantitative analysis of these measurements

is reported by Margaretha [39] and Voluer [75] and is summarized in Chapter 6 of the

dissertation. Before the adaptation region, the measured wave length is close to the

one calculated from the wave-only dispersion relation, and after that region it agrees

with the theoretical wave-current dispersion relation. The change in the wave length

clearly corresponds to observed spatial variations in wave amplitude.

These observations motivate us to make a model which allows a continuous change

in the wave and current properties. In this chapter we propose a low dimensional

model that describes the adaptation process of a surface water wave abruptly meeting

a (depth dependent) current. Wave and current simultaneously adapt and reach an

equilibrium condition characterized by the dispersion relation of the homogeneous

problem. We use the linear theory to describe the waves, so that the equilibrium

condition is determined by the Rayleigh equation. In the model to follow, we allow

the fluid properties parameterized by four parameters to change quasi-homogeneously

in the x− direction. The actual change is determined by requiring that the continuity

equation and the kinematic free-surface boundary condition are satisfied pointwise;

furthermore it is required that the mass, momentum, and energy density fluxes are

conserved. This can be stated differently: we derive the model by considering the

full Euler equations, and instead of requiring them to hold pointwise we project these

equations in a number of specific directions. The directions are chosen such that

changes in relevant physical quantities mentioned above, are modeled in a valid way.

Somewhat related to the problem that we address, is the method of Green and

Naghdi [22], [21]. In Section 4.4.3 of this chapter we briefly describe the GN method

and also compare the characteristics of the present model and the GN method. We

show the characteristics of the GN method and the problem that is encountered when

the wavenumber varies. Briefly speaking, if the range of the wavenumber is not small,

the GN method will result in a large set of nonlinear equations that has to be solved.

In this chapter, we describe details of the model and give an analysis of its accuracy.

In the next chapter, we study special cases of current profiles and compare the results

with laboratory experiments found in the literature. These comparisons show that

the model predicts both qualitatively and quantitatively the result of the interaction

process.

To simplify the notation when dealing with approximate solutions, and to keep

track of the order of errors, we introduce the notation of the residues as follows:

Rkbc ≡ (∂tη + uηx − w)|z=η , (4.1)

Rdbc ≡ p|z=η , (4.2)
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4. A Low-Dimensional Model for Waves Encountering a Current

RE1 ≡ (∂tu+ u∂xu+ w∂zu+ ∂xp) , − 1 ≤ z ≤ η (4.3)

RE2 ≡ (∂tw + u∂xw + w∂zw + ∂zp+ 1) , − 1 ≤ z ≤ η (4.4)

RCE ≡ (∂xu+ ∂zw) , − 1 ≤ z ≤ η (4.5)

Rbottom ≡ w|z=−1 . (4.6)

When the residues are zero, the right-hand sides of (4.1)-(4.6) are the governing

equations (2.1)-(2.6).

4.2 Linear solutions of the homogeneous problem for weakly nonlinear

currents

In Chapter 2, the general solution is defined, and we show the exact solution for

the case when the current profile is linear. It is known that for water of finite depth,

exact analytical solutions of the Rayleigh equation can be found for only a few types

of current, including linear and piecewise linear currents (see [17]). If the current

profile is not linear, U ′′ (z) 6= 0, then in general analytical exact solutions of the

Rayleigh equation cannot be found. Any approximate solution will introduce errors

in the Rayleigh equation and the dispersion relation. Now the question is, how big

are the residues (4.1)-(4.6) if the Rayleigh equation is not satisfied exactly?

Denote the approximate solution by ŵa, and introduce the residue of the Rayleigh

equation (2.22) and the residue of the dispersion relation (2.25):

RRayleigh =
d2ŵ

dz2
− f (z) ŵ, (4.7)

RDR =
ŵ′

ŵ

∣∣∣∣
z=η0

− β. (4.8)

We require that the values of ŵa at the free surface and the bottom satisfy (2.23)

and (2.27). Take û and p̂ related to ŵ = ŵa by (2.28) and (2.29). After substituting

(2.17)-(2.20) into (4.1 )-(4.6 ), we find for the residues:

RE2
(2.28),(2.29)

=
(ω − kU)

k2
RRayleigh cos (θ) + O

(
ε2
)

(4.9)

Rdbc (2.29),(2.27)
= ŵk2 (ω − kU)RDR cos θ + O

(
ε2
)
, (4.10)

while Rkbc and RE1 are O
(
ε2
)
; RCE and Rbottom are zero.

From these we see that the full equations (2.1)-(2.6) are still satisfied to O
(
ε2
)

if

RRayleigh = O
(
ε2
)

(4.11)

and

RDR = O (ε) . (4.12)
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4.2. Homogeneous problem: weakly nonlinear currents

First we show how (4.12) can be satisfied if we have an approximate solution that

satisfies (4.11). To that end, let ω, U (z) , and η0 be given. Notice that if the Rayleigh

equation is approximated, then relation (2.25) does not give the correct wavenumber

k anymore. Therefore we need a good approximation for the wavenumber k. In the

literature there are several models to approximate the wavenumber k (or, equivalently,

the wave velocity ω
k ). In the next chapter we will use the approximate dispersion

relation given in Chapter 3. Below we will show that if the dispersion relation is

approximated in this way, then (4.12) is a direct implication of (4.11).

The relation that approximates the dispersion relation given in Chapter 3 is rewrit-

ten like:
1

2

∫ η0

−1

[
(ŵ′

a)
2

+ f (z) ŵa
2
]
dz − 1

2
βŵa (η0)

2
= 0. (4.13)

Here ŵa is the approximate solution of the Rayleigh equation that satisfies the bound-

ary conditions (2.27) and (2.23), β is given by (2.26), and f (z) is given by (2.24).

Remark 4.2.0.1 If ŵa in (4.13) is the exact solution of the boundary value prob-

lem (so RRayleigh = 0), then (4.13) leads to a relation that is equivalent to the exact

dispersion relation.

Notice that we may write (4.13) like

−
∫ η0
−1 ŵa [ŵ′′

a − f (z) ŵa] dz

ŵa (η0)
2 +

(
ŵ′

a (η0)

ŵa (η0)
− β

)
= 0,

which gives

RDR =

∫ η0
−1
ŵaRRayleighdz

ŵa (η0)
2 . (4.14)

The approximation ŵa satisfies the boundary conditions (2.27) and (2.23), and since

a = O (ε) it follows that ŵa = O (ε). Consequently, it follows from (4.14) that

RDR = O (ε) if RRayleigh = O
(
ε2
)
.

Now consider the case where U ′′ (z) 6= 0 and ŵa is given by the solution (2.30) for

linear current. Substituting this to the Rayleigh equation gives

RRayleigh = aU ′′ k (ω − kU (η0))

sinh (k (1 + η0))

sinh (k (z + 1))

(ω − kU (z))
.

Therefore if (ω − kU (z)) is never zero and U ′′ (z) = O (ε) then it immediately follows

that

RRayleigh = O
(
ε2
)
,

and hence that for U ′′ (z) = O (ε) the approximation (2.17)-(2.20) with the solution

for the linear current (2.30) satisfies the full equations (2.1 )-(2.6) up to O
(
ε2
)
.

Now we show that for currents having larger curvature,

U ′′ (z) = O
(
ε

1
2

)
, (4.15)
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4. A Low-Dimensional Model for Waves Encountering a Current

we still satisfy (4.11) if we use a WKB approximate solution (see [25], [74]). For (2.22)

and (2.23), this approximation is given by (3.20) where the amplitude Γ is taken to

satisfy the boundary condition (2.27):

Γ = Ia
(
k U |z=η

0

− ω
) f (η0)

1/4

sinh
∫ η

0

−1

√
f (ζ)dζ

.

Subtituting ŵ = ŵWKB into the Rayleigh equation (2.22) gives

RRayleigh =
ŵWKB

16f (z)
2

(
5

(
df

dz

)2

− 4f (z)
d2f

dz2

)
. (4.16)

With f (z) given by (2.24), (ω − kU (z)) nonvanishing, and U that is slowly varying

in the sense that

U = U
(√
σz
)
, (4.17)

for some small parameter σ, it follows that RRayleigh = O
(
εσ2
)
. Hence for σ = ε

1
2

it follows that RRayleigh = O
(
ε2
)
. So, also in this case all residues of the governing

equations (4.1)-(4.6) are O
(
ε2
)

and therefore are not larger than the error from

linearization.

4.3 The quasi-homogeneous approximation

4.3.1 Description of the model

In this Section we introduce the low dimensional model that describes the adapta-

tion process when a surface water wave meets a current. The model predicts changes

of both wave and current and gives the dynamics of those changes. Wave and cur-

rent simultaneously adapt in order to reach an equilibrium condition giving a linear

solution of the homogeneous problem.

We use four parameters to describe the spatial variation of the wave-current envi-

ronment: the wave amplitude a, the wave number k, the mean-free surface elevation

η0, and one parameter Pc. to describe the deformation of the current profile. Write

η = η (P;x, t) , u = u (P;x, z, t) ,

w = w (P;x, z, t) , p = p (P;x, z, t) ,

where P = (a, k, η0, Pc) . In the quasi-homogeneous approximation (QHA), P varies

in the x−direction.

In this QHA we generalize (2.17)-(2.20) and add a term p̄2 given in the form of the

second-order mean pressure of the homogeneous problem (4.24). In detail, we take η,
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4.3. The quasi-homogeneous approximation

u, w, and p given by

η = η0 (x) + a (x) cos θ (x, t) , (4.18)

u = U (P (x) ; z) + û (P (x) ; z) cos θ (x, t) , (4.19)

w = ŵ (P (x) ; z) sin θ (x, t)−
dP

dx
·
(∫ z

−1

(
∂û

∂P
cos θ (x, t) +

∂U

∂P

)
dz

)
, (4.20)

p = −z + η0 (x) + p̂ (P (x) ; z) cos θ (x, t) + p̄2 (P (x) ; z) . (4.21)

Here the wave phase θ is related to the wave number k and the wave frequency ω by:

∂xθ = k, ∂tθ = −ω. (4.22)

In the approximation (4.19)-(4.21) ŵ is the solution (or approximate solution) of

(2.22), (2.23), (2.27). It determines û and p̂ by (2.28) and (2.29).

Remark 4.3.1.1 In the next chapter, we use the solution for a linear current

(2.30) to construct the Ansatz for the quasi-homogeneous approximation if the current

is uniform or if the curvature of the initial (wave-free) current is small or zero. In

case the curvature of the initial current is moderate, we improve the model by using

the WKB approximated solution (3.20).

Remark 4.3.1.2 The second-order mean pressure p̄2 contributes to the second-

order term of the momentum density flux 〈M〉 and the energy density flux 〈F〉 . For

the homogeneous problem, after substituting (2.18)-(2.19) and (2.28) into (2.4) and

time-averaging the result we get the total mean pressure:

〈p〉 = −1

2
ŵ2 − z + η0 + h.o.t. (4.23)

Here the term −z + η0 gives the zeroth-order mean pressure, and the second-order

mean pressure of the homogeneous problem is given by

p2 = −1

2
ŵ2. (4.24)

For uniform current, U ≡constant, (4.24) is equivalent with the second-order mean

pressure derived by Whitham [78].

For the current profile during interaction we take

U (P (x) ; z) = Uc (z) + Uchange (P (x) ; z) , (4.25)

where Uc (z) is the profile of the initial current (when waves are absent) and Uchange

gives the deformation due to the presence of waves. Besides depending on Pc, Uchange

may also depend on the wave parameters a, k, and η0 like

Uchange (P; z) = U1 (Pc; z) + U2 (a, k, η0; z) .
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4. A Low-Dimensional Model for Waves Encountering a Current

Here U2 (a, k, η0; z) is the part of Uchange that depends on the wave parameters. In

this model, U2 (a, k, η0; z) is restricted to O
(
ε2
)
.

The vertical velocity (4.20) has been taken to guarantee that the continuity equa-

tion and the bottom boundary condition are satisfied exactly, RCE = 0 and Rbottom =

0. In order to consistently work with perturbations of O (ε) , the vertical velocity w

may not be larger than O (ε) . Therefore we have the following requirement for a′ (x):

at each x ≥ 0, a′ (x) must not be larger than O (ε) . (4.26)

The model for the adaptation process of wave and current is now defined by the

equations for the parameter dynamics. We will show that the following requirements

lead to a model that is physically motivated and furthermore sufficiently accurate:

Rkbc = O
(
ε2
)
, (4.27)

〈I〉 = I0, (4.28)

〈M〉 = M0, (4.29)

〈F〉 = F∞, (4.30)

Here, the angle brackets denote time-averaging over a wave period,

〈ϕ〉 =
1

T

∫ T

0

ϕ dt

with T = 2π/ω.

Conditions (4.28)-(4.30) mean that these three fluxes are conserved during the

evolution in the adaptation interval. The constants I0, M0, and F∞ will be chosen

appropriately in the following discussion (see (4.49), (4.50) and (4.52)). The dynamics

require that wave and current simultaneously adapt and reach an equilibrium condi-

tion characterized by the dispersion relation of the homogeneous problem. Therefore

the parameters converge to constant values (which are not a priori given) as the

distance x increases, i.e.

lim
x→∞

P (x) = P∞ = (a∞, k∞, η∞0 , P
∞
c ) ≡ constant. (4.31)

In the model, the equilibrium values k∞, η∞0 , P∞
c and ω are related by the (approxi-

mate) dispersion relation of the homogeneous problem (3.9).

4.3.2 The parameter dynamics

We will now investigate how the requirements (4.27)-(4.30) for the model lead to

specific conditions for the parameters collected in P, namely three algebraic relations

(of which two are nonlinear) and one ODE.

44



4.3. The quasi-homogeneous approximation

4.3.2.1 Conservation of mass and momentum-density fluxes

After substituting (4.18) and (4.19) into (4.28), we get

∫ η0

−1

Udz +
1

2

(
a2

2
(∂zU)z=η0 + a û|z=η0

)
+ h.o.t = I0. (4.32)

And after substituting (4.25) for U and a solution for û into (4.32), we get the first

relation for the parameters a, k, η0, Pc. Since no differentiation with respect to x is

included, the resulting relation is algebraic.

In the same way, after substituting (4.18), (4.19), and (4.21) into (4.29) we get

∫ η0

−1

(
U2 +

1

2
û2 − z + η0 + p̄2

)
dz+

1

2
a (2Uû+ p̂)z=η0 +

a2

2
(U∂zU)z=η −

a2

4
+ h.o.t = M0. (4.33)

For the quasi-homogeneous evolution, this leads to the second relation for the param-

eters, again a nonlinear algebraic relation.

Remark 4.3.2.1 Notice that the x−derivatives of the left hand sides of (4.32)

and (4.33) must be identical to zero. From this, it can be shown that

dPc
dx

=
da

dx
· O (ε) ,

dη0
dx

=
da

dx
· O (ε) . (4.34)

This means that P ′
c (x) and η′0 (x) are of the same order, and each is of one order of

magnitude larger than a′ (x) .

4.3.2.2 The kinematic boundary condition: conservation of ’wave volume’

First, we write ŵ as

ŵ = a
(
ω − k U |z=η0

)
ŵnorm, (4.35)

where ŵnorm is a normalized solution of the Rayleigh equation (2.22), that does not

depend on a and η0:

ŵnorm = 1 at z = η0, ŵnorm = 0 at z = −1. (4.36)

After substituting (4.18)-(4.20), (4.34) into (4.1), assuming (4.26), we get

Rkbc =
{
a
(
ω − k U |z=η0

)
− ŵ|z=η

0

}
sin θ+

{
a′ U |z=η

0

+ a′
∫ η

0

−1

∂û

∂a
dz + k′

∫ η
0

−1

∂û

∂k
dz

}
cos θ + O

(
ε2
)
. (4.37)
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4. A Low-Dimensional Model for Waves Encountering a Current

The coefficient of sin θ in the formula above vanishes as a consequence of (2.27).

Condition (4.27) leads to the condition

a′ U |z=η
0

+ a′
∫ η

0

−1

∂û

∂a
dz + k′

∫ η
0

−1

∂û

∂k
dz = 0. (4.38)

An expression for
∫ η

0

−1
∂û
∂adz can be derived from (2.28) and (4.35)-(4.36):

∫ η
0

−1

∂û

∂a
dz =

I

k

∫ η
0

−1

∂

∂a

dŵ

dz
dz

=
(
ω − k U |z=η

0

) 1

k

[
ŵnorm|z=η0 − ŵnorm|z=−1

]

=
ω

k
− U |z=η

0

. (4.39)

So (4.38) can be simplified as follows

a′
ω

k
+ k′

∫ η
0

−1

∂û

∂k
dz = 0

(2.28),(4.35)⇔

a′
ω

k
+ k′

∂

∂k

a (ω − kU (η0))

k

{
ŵnorm|z=η0 − ŵnorm|z=−1

}
= 0

(4.36)⇔

a′k − k′a = 0 ⇔ (4.40)
a

k
= α ≡ constant. (4.41)

The third algebraic relation for the QHA model is given by (4.41). This relation

can also be written like aλ ≡constant, with λ the wave length. Since aλ has an

interpretation as ’wave volume’, this result means that the wave volume is conserved

in the x−direction.

Remark 4.3.2.2 Relation (4.40) implies that

da

dx
=
dk

dx
· O (ε) . (4.42)

This means that dk
dx is one order of magnitude smaller than da

dx . This already shows

that the change of the wave number (wave length) will be relatively large compare to

the change of the wave amplitude, in agreement with experimental observations (see

the next chapter).

4.3.2.3 Conservation of energy-density flux

The fourth equation for the parameter dynamics results into an ODE for k (x) and

is obtained by substituting (4.18)-(4.21) into (4.30). Derivatives of the parameters dP
dx

appears only in the approximation for w. In the expression for the energy flux (2.9) w

appears quadratically; and after time-averaging, only terms containing multiplication

of a pair of parameter derivatives and terms without any derivative remain. The
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4.3. The quasi-homogeneous approximation

order of each term can be analyzed using (4.34) and (4.42). After replacing da
dx with

dk
dx using (4.40), and neglecting higher order terms, the resulting ODE can be written

like

F0 (a, k, η0, Pc) + F2 (a, k, η0, Pc)

(
dk

dx

)2

+ h.o.t = F∞ ≡ constant. (4.43)

where

F0 =

∫ η0

−1

(
U3

2
+ U (p2 + η0) +

U

4

(
3û2 + ŵ2

)
+
ûp̂

2

)
dz+

3

4
U2

(
a û|z=η0 +

a2

2

∂U

∂z

∣∣∣∣
z=η0

)
+
a

2
(Up̂)z=η0 , (4.44)

F2 =

∫ η0

−1

U

4

(
a

k

∫ z

−1

∂û

∂a
dz +

∫ z

−1

∂û

∂k
dz

)2

dz. (4.45)

From (4.43), dkdx can be calculated directly:

dk

dx
= ±

√
F∞ −F0 (a, k, Pc, η0)

F2 (a, k, Pc, η0)
. (4.46)

When the wave propagates in the same direction as the current, the wave length

increases (i.e. dk
dx > 0): for this case we choose the negative sign for (4.46). On

the other hand, when the wave opposes the current, the wavelength decreases(i.e.
dk
dx < 0), and the positive sign is chosen.

If from the three algebraic relation above we assume that the parameters a, η0,

and Pc are all expressed in terms of k, the relation (4.46) can be integrated to give

x = ±
∫ k(x)

k0

√
F2 (a (k) , k, Pc (k) , η0 (k))

F∞ −F0 (a (k) , k, Pc (k) , η0 (k))
dk, (4.47)

with sign as stated above. This will produce the adaptation length L by choosing a

certain value that is sufficiently close to the asymptotic value k∞ as the end of the

integration interval.

4.3.3 The initial condition and the steady state of the parameters

The spatial dynamics of the parameters is determined by (4.43), and the three

algebraic equations (4.32), (4.33) and (4.41).

To describe the evolution we first have to specify the initial situation: the wave

and current properties at the start of the interaction. In this model we take the

amplitude and wave number of the current-free wave, a0 and k0, as conditions for

a and k at x = 0. The wave number k0 is related to the wave frequency ω by the

’current-free’ dispersion relation:

ω2 = k0 tanh k0. (4.48)
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4. A Low-Dimensional Model for Waves Encountering a Current

The value of the mean free surface elevation at x = 0 is taken to be zero, η0 (0) = 0.

Taking I0 given by

I0 =

∫ 0

−1

Uc (z)dz, (4.49)

the remaining condition for Pc at x = 0 is calculated from the conservation of mass

(4.32).

The constants M0 in (4.33) and α in (4.41) are calculated from the conditions for

the parameters at x = 0:

M0 = M (a0, k0, 0, Pc (0)) , (4.50)

α =
a0

k0
. (4.51)

Having specified these values at the start of the interaction, let

P∞ = (a∞, k∞, η∞0 , P
∞
c )

denote the equilibrium values of the parameters at the end of the interaction, (see

(4.31)), satisfying the (approximate) dispersion relation of the homogeneous problem

(3.9). In other words, the equilibrium values give a solution of the linear homoge-

neous problem. The values of P∞ = (a∞, k∞, η∞0 , P∞
c ) are calculated by solving four

algebraic equations (of which three are nonlinear): (4.32), (4.33), (4.41), and (3.9),

for a = a∞, k = k∞, η0 = η∞0 and Pc = P∞
c . Note that the limiting values can be

found without using the specific evolution of the parameters. To find the dynamics,

first the value of the total energy-density flux F∞ has to be specified. It is calculated

from the equilibrium values of the parameters:

F∞ = F0 (a∞, k∞, η∞0 , P∞
c ) . (4.52)

After determining F∞, the dynamics can be calculated from (4.46).

4.3.4 A geometrical view of the parameter dynamics

The dynamics of the four parameters a, k, η0, and Pc are determined by two

nonlinear algebraic relations (4.32), (4.33), one linear algebraic relation (4.41), and

the ODE (4.43). Each algebraic relation can be seen as a 3D subspace in the four-

dimensional parameter space. An illustration is given in Figure 4.1. The intersection

of the three subspaces (4.32), (4.33), (4.41) defines a curve in the four-dimensional

space. The adaptation of a (x) , k (x) , η0 (x) , and Pc (x) is represented by this curve.

This curve depends on four constants: ω, I0, M0, and α. Here ω is given while I0,

M0, and α is calculated from (4.49), (2.7) and (4.51). In this four dimensional space,

there is a manifold given by (3.9), which is the (exact/approximate) dispersion relation

of the homogeneous problem. Each point (a, k, η0, Pc) in this manifold represents a

linear solution of the homogeneous problem. This manifold is called the dispersion

manifold.
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P0 

P∞ 

Figure 4.1: A geometrical view of the parameter dynamics

Since P∞ = (a∞, k∞, η∞0 , P∞
c ) denotes the intersection point of the evolution

curve and the dispersion manifold, the model represents the case where the parame-

ters evolve from a starting point P0 (where we have the current-free dispersion rela-

tion) into a steady state P∞ where the parameters are related by the wave-current

dispersion relation of the homogeneous problem.

4.4 Accuracy of the model

4.4.1 Accuracy in the governing equations

The description of the adaptation of the wave-current by the four parameter model

is necessarily approximative. In this Subsection we will show that after the start of the

interaction the errors in the governing equations are of higher order than linear. We

discuss in particular the residues of the Euler equations and the dynamic boundary

condition. The residues of the other equations, i.e. the kinematic boundary condition,

continuity equation, and bottom boundary condition, will already be small
(
O
(
ε2
))

or zero by the requirements of the model.

After substituting (4.18)-(4.21), (2.28), (2.29) and (4.41), into (4.2)-(4.4), assum-

ing (4.11), these residues are given by:

RE1
(4.34),(4.42)

=
dk

dx
· O (ε) + O

(
ε2
)
, (4.53)

RE2
(4.34),(4.42),(4.11)

=
dk

dx
· O (ε) + O

(
ε2
)
, (4.54)

Rdbc = O (ε) · RDR · cos θ + O
(
ε2
)
. (4.55)

In the residues above, dkdx is a direct consequence from quasi-homogenization, and the

term RDR in (4.55) is given by (4.8). In the discussion below, we will analyze the size
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4. A Low-Dimensional Model for Waves Encountering a Current

of dk
dx and RDR both at x = 0 and as the distance x increases.

First of all, notice that the value of dkdx at each x can be approximated by expanding

the numerator in (4.46) with ∆k = k (x) − k∞ as variable:

dk

dx
= ±

√
F∞ − F0 (a (k) , k, η0 (k) , Pc (k))|k=k∞+∆k

F2 (k)

(4.52)
= ±

√√√√∆k
[(

∂
∂k + da

dk
∂
∂a + dPc

dk
∂
∂Pc

+ dη0
dk

∂
∂η0

)
F0

]

k=k∞

F2 (k)
+ h.o.t. (4.56)

From (4.45) and (4.44) it can be shown that F2 = O
(
ε2
)
, ∂F0

∂k

∣∣
k=k∞

= O
(
ε2
)
,

∂F0

∂a

∣∣
k=k∞

= O (ε) , ∂F0

∂Pc

∣∣∣
k=k∞

= O (1) , ∂F0

∂η0

∣∣∣
k=k∞

= O (1) . Also, from (4.42) and

(4.34) we have da
dk = O (ε) , dPc

dk = O
(
ε2
)
, dη0dk = O

(
ε2
)
. These imply that (4.56) will

be of the same order as
√

∆k.

In the same way, with k as parameter we write

RDR = RDR
∣∣
P=P∞

+ ∆k

[(
∂

∂k
+
da

dk

∂

∂a
+

dη0
dk

∂

∂η0
+
dPc
dk

∂

∂Pc

)
RDR

]

P=P∞

+ h.o.t. (4.57)

In the model we require that P∞ satisfies the (approximate) dispersion relation (3.9).

Then RDR
∣∣
P=P∞

(but not its derivatives) must be either zero or O (ε) . This implies

that the right-hand side of (4.57) must be either O (ε) or of the same order as ∆k.

At x = 0, the value of k is determined by the wave-only dispersion relation (4.48),

and at x → ∞ the limiting value k∞ is determined by the (approximate) dispersion

relation of the homogeneous problem (3.9). In general, because k (0) and k∞ are

determined from two different dispersion relations, then ∆k|x=0 = O (1) . In other

words both dk
dx and RDR are O (1) at x = 0; and this implies that RE1 , RE2 , and

Rdbc are O (ε) at x = 0.

As the distance x increases, ∆k goes to zero, so both dk
dx and the terms of (4.57)

containing ∆k decrease to zero. In other words after the start of the interaction, RE1 ,

RE2 , Rdbc decrease smoothly from O (ε) to O
(
ε2
)
. So for x > 0 these residues are

of higher order. Furthermore, from the relations for the residues (4.53)-(4.55), we

notice that there must be a position x = L such that for x ≥ L error from quasi-

homogenization are smaller than O
(
ε2
)

error from homogenization. The distance L

is called ’the distance of adaptation’.

4.4.2 Consequences of the flux conservations

Having investigated the residue of the equations, we now investigate in a differ-

ent way consequences of the flux conservations. To investigate this, first observe

that for an approximate solution of the full equation, the conservation laws will also
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only be satisfied approximately and the right-hand sides of (2.11)-(2.13) are not zero

anymore. For the case that the velocity field satisfies the bottom boundary condition

and the continuity equation exactly, relations between the conservation laws for mass,

momentum, and energy and the residues are given by

∂tη + ∂xI = Rkbc, (4.58)

∂tI + ∂xM =

∫ η

−1

RE1dz + u|z=ηRkbc + ηxRdbc, (4.59)

∂tE + ∂xF =

∫ η

−1

(
uRE1 + wRE2

)
dz+

Rkbc

(
1

2
u2 +

1

2
w2 + η

)

z=η

+ (uηx − w)z=ηRdbc, (4.60)

where expressions for I, M, F , E are given by (2.7)-(2.10).

If all quantities η, u, w, and p, are periodic in time, then after time-averaging

(4.58)-(4.60) we will get the following relations between the residues of the governing

equations and the mass, momentum, and energy density fluxes:

∂x 〈I〉 =
〈
Rkbc

〉
, (4.61)

∂x 〈M〉 =

〈∫ η

−1

RE1dz

〉
+
〈
u|z=ηRkbc

〉
+
〈
ηxRdbc

〉
, (4.62)

∂x 〈F〉 =

〈∫ η

−1

(
uRE1 + wRE2

)
dz

〉
+
〈
(uηx − w)z=ηRdbc

〉
+

〈
Rkbc

(
1

2
u2 +

1

2
w2 + η

)

z=η

〉
. (4.63)

In the linear approximation, conserving 〈I〉 , 〈M〉 , and 〈F〉 as is required by the

model means that ∂x 〈I〉 , ∂x 〈M〉 , and ∂x 〈F〉 vanish in the order of approximation

(i.e. they are smaller than O
(
ε2
)
).

The first relation (4.61) means that conserving 〈I〉 implies the vanishing of all

O
(
ε2
)

terms of the time-average of Rkbc. From this, and from the second and third

relations (4.62)-(4.63), the vanishing of ∂x 〈M〉 and ∂x 〈F〉 implies that

〈∫ η

−1

RE1dz

〉
=

〈
da

dx
cos θRdbc

〉
+ h.o.t, (4.64)

〈∫ η

−1

(
uRE1 + wRE2

)
dz

〉
=

〈
U |z=η

da

dx
cos θRdbc

〉
+ h.o.t. (4.65)

As discussed previously, dkdx is O (1) at x = 0 and decreases to zero as the distance x

increases. Then we may say that dk
dx is smaller than O (1) for x > 0. From (4.42), this

means that da
dx is smaller than O (ε) for x > 0. We have shown also that Rdbc is O (ε)

at x = 0 and after a finite distance it becomes O
(
ε2
)
. Then we may say that Rdbc
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is smaller than O (ε) for x > 0. Then (4.64)-(4.65) imply that the right-hand side of

(4.64) and (4.65) are of higher order (i.e., they are smaller than O
(
ε2
)
):

〈∫ η

−1

RE1dz

〉
≈ 0 for x > 0 (4.66)

and 〈∫ η

−1

(
uRE1 + wRE2

)
dz

〉
≈ 0 for x > 0. (4.67)

This means that in the interaction the Euler equations are projected in two specific

directions: (1, 0)
T

and (u,w)
T
. These are the implications of flux conservation. Con-

ditions (4.66)-(4.67) are weak formulations for periodic waves of the condition implied

by the GN method, which will be discussed in the following.

4.4.3 Comparison with the Green-Naghdi theory for fluid sheets

For water waves, the Green-Naghdi (GN) method is often used to derive model

equations for water-structure interaction or to derive nonlinear wave solutions. Al-

though the general theory does not assume that the flow is irrotational, in the litera-

ture we find that existing applications of the GN method for water waves are so far

only for irrotational waves.

The GN method is based on a separation of variables, in which the velocities are

described by using N given interpolation functions qi (z). The fluid velocities are

expressed in such a way that the continuity equation (2.5) holds automatically,

u =

N∑

i=1

q′i (z) ξi (x, t) , (4.68)

w = −
N∑

i=1

qi (z)∂xξi (x, t) , (4.69)

in which ξi (x, t) and the free surface elevation η (x, t) are the unknown functions to

be solved (Green and Naghdi [22], Green [21], and Kim et al. [31]). There are 2N +2

unknowns: ξi, pi, η, and pbottom, where the pi’s are weight-integrated pressures,

pi =

∫ η

−h

pqidz,

and pbottom is the pressure at the bottom. The theory assumes that the free surface

dynamic boundary condition holds. The 2N+2 equations for the unknowns come from

the free surface kinematic boundary condition and the bottom boundary condition,

plus 2N weak formulations of the Euler equation,
∫ η

−1

RE1q′i (z) dz = 0, (4.70)

∫ η

−1

RE2qi (z) dz = 0. (4.71)
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The mass is conserved since the continuity equation and the kinematic boundary

condition are taken to hold. It is also clear that (4.70) and (4.71) imply
∫ η

−1

(
uRE1 + wRE2

)
dz = 0.

This means that the right-hand side of (4.60) vanishes, thus the energy is conserved.

Moreover, if one of the shape functions, for example q1, is given by q1 = z then (4.70)

implies
∫ η
−1

RE1dz = 0. This means that the right hand side of (4.59) vanishes, thus

horizontal momentum is also conserved.

With the GN method, the conservation of mass, momentum, and energy are point-

wise in time. These conservations are stronger than the conservations we require.

However, although the GN method gives a good theoretical tool for formulating solu-

tions of various fluid-dynamics problems, in practice it is not always easy to solve the

set of 2N + 2 nonlinear equations resulting from GN method. An example related to

the problem considered in this dissertation is given below.

For the simplest example, i.e. an irrotational wave, the shape functions qi (z) are

taken from the Stokes wave solution (or its approximations for water of infinite depth

or shallow water): q0 = 1, q1 = z, qn+1 = sinh (nk (z + h)), n = 1 . . .N − 1. For the

case that the wavenumber k varies in x, the shape functions above can be adapted by

expressing them in terms of Taylor series expansions around a fixed number k0. For

our nondimensionalized linear wave problem, we will get the following set of shape

functions:

q0 = 1, q1 = z,

q2j =
(z + 1)j−1

(j − 1)! (k0)
j−1

dj−1

dzj−1
sinh (k0 (z + 1)) ,

j = 1, 2, . . .
N − 1

2
.

When we want to cover a large range of k (x) (i.e. from k0 that satisfies the wave-

only dispersion relation until k∞ that satisfies the wave-current dispersion relation)

it is necessary to take N large. This means that we will end up with a large set of

nonlinear equations that has to be solved.

4.5 Conclusions and Remarks

In this chapter, a model for wave-current interaction with particular emphasis on

situations as they appear in laboratory basins is presented. The main aim of this

research is to give a practical method for hydrodynamic laboratories like MARIN,

so that they can easily make a prediction of the changes that will happen on the

generated waves and current. By having a prediction of these changes, they can

adapt their wave and current in such a way that the interaction will give the requested

wave-current environment.
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We approach the problem by seeing the interaction as a smooth adaptation pro-

cess that takes place spatially. During this adaptation, we require the mass, the

momentum, and the energy density fluxes to be conserved, and require the continuity

equation and the kinematic boundary condition to be satisfied. In the model, wave

and current simultaneously adapt and reach an equilibrium condition characterized by

the dispersion relation of the homogeneous problem. We allow the free-surface eleva-

tion, the velocities, and the pressure to change quasi-homogeneously in one horizontal

direction.

In this chapter we give an analysis of the model and its validity. We show that

directly after the start of the interaction, the residues of the governing equations are

of higher order, and these residues decrease. Furthermore, there will be a position

x = L such that for x ≥ L the error from the quasi-homogenization are smaller than

the O
(
ε2
)

error from homogenization. The distance L, which precise definition will

be given in the next chapter, is called ’the distance of adaptation’. We have shown

also that the requirement that the mass, momentum, and energy-density fluxes must

be conserved implies that residues of the full Euler equations are projected in two

specific directions. These projections are weak formulations of the condition implied

by the Green-Naghdi (GN) method.

A discussion on the Green-Naghdi method is given. It is shown there the character-

istics of the GN method and the problem encountered if the range of the wavenumber

k (x) is large. With the GN method, the mass, momentum, and energy are automati-

cally conserved. These conservations are pointwise in time, so they are stronger than

the conservations we require. However, if the range of the wavenumber k (x) is large,

it is not so easy to solve the large set of nonlinear equations resulting from the GN

method.

In the next chapter, we present case studies and a comparison with results from

laboratory experiments found in the literature. Good agreements are found from

these comparisons.
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Chapter 5

Case Studies and Comparison with Experiments

For the problem that a surface water wave suddenly meets a current we inves-

tigate the changes in wave and current characteristics. The model described

in Chapter 4 is used to study changes in waves and current for cases with

uniform, linear, and nonlinear currents. The predicted increase/decrease of

the wave length, the wave amplitude, the mean free-surface elevation, and the

magnitude/curvature of the current profile are studied both for adverse and

favourable currents. The distance of adaptation is calculated, and the results

show that this distance is smaller than the wave length but it is large compared

to the wave amplitude. Comparisons with laboratory experiments reported in

the literature show that the model correctly predicts the qualitative results of

the interaction process. Quantitatively, the predictions are good for experi-

ments with following and adverse uniform currents reported by Thomas [69],

Margaretha [39] and Voluer [75], for favourable uniform current reported by

Swan et al. [67], for nonlinear current reported by Klopman [33], and for small

amplitude waves on nonlinear strong current reported by Kemp and Simons

[29].

5.1 Introduction

This chapter serves as the second part of an investigation on the spatial adaptation

when a wave and a current start to interact. The model has been presented and

explained in Chapter 4; in this chapter we present case studies and comparison with

laboratory experiments reported in the literature.

The model deals with wave-current interaction with particular emphasis on situ-

ations as they appear in hydrodynamic laboratories. For accurately testing various

designs for offshore structures and ships, a hydrodynamic laboratory must be able to

provide precise scaled-versions of various conditions of the real sea. The objective of

this research is to find a model for the accurate generation of wave and current condi-

tions in a hydrodynamic laboratory. Interest is specifically also in the dependence on

the water depth. The difficulty of getting a requested wave and current environment
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5. Case Studies and Comparison with Experiments

is due to the interaction between wave and current. In the presence of a current, the

wavemaker motion will produce waves that are different from the waves produced (by

the same wavemaker motion) in the absence of currents. For the purpose of laboratory

testing we need a model that can predict the changes of both waves and current.

The model discussed here describes the adaptation process that starts when a

surface wave abruptly meets a depth dependent current. Before the start of the

interaction, the wavelength is determined from the wave-only dispersion relation; and

the spatial adaptation will afterwards result in a wavelength which agrees with the

dispersion relation of steady wave-current interaction determined by the solution of

the Rayleigh equation.

We apply the model to predict the increase/decrease of the wave length, the wave

amplitude, the mean free surface elevation, and the magnitude/the curvature of the

current profile for cases with uniform, linear, and weakly to moderately nonlinear

currents. First of all, we will define ’the distance of adaptation’, which is the distance

that needed by the wave and current to come sufficiently close to a new equilibrium

because of the interaction. This distance will be calculated for case studies with

adverse and following uniform and linear currents. The results show that the distance

of adaptation is smaller than the wave length, but it is large compared to the wave

amplitude. Furthermore, results from the model show that within this distance the

change of the wave length will be relatively large compared to the change of the wave

amplitude, and the change of the current will be relatively small compared to the

change of the wave amplitude.

For adverse currents, the model predicts interesting results if the wave frequency

is close to the wave-blocking frequency. In the presence of a current, these waves are

amplified much more than waves with smaller frequencies. The predicted distance of

adaptation is also longer for this case.

Predicted results of the adaptation process are compared with laboratory experi-

ments reported by Kemp and Simons [29], Klopman [33], Thomas [69], and Swan et

al [67]. For the case with uniform current, we also present a comparison with a set of

measurements from the Maritime Research Institute Netherlands (MARIN) (test no.

17710-1-OB (2002)). Data analysis of this experiment are reported Margaretha [39]

and Voluer [75]. For most experiments the model predicts qualitatively and quanti-

tatively results of the adaptation process; while for some experiments the model only

correctly predicts the qualitative behaviour of the interaction process.

5.2 The distance of adaptation

In the model, the wave frequency ω is constant, while the wave number evolves

in one-horizontal direction, starting from an initial value k = k0 that satisfies the

wave-only dispersion relation 4.48 and asymptotically goes to k = k∞ as the distance

increases. The value k∞ is related to asymptotic values of the other parameters

by the (approximate) wave-current dispersion relation of the homogeneous problem
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5.3. Uniform current

(3.9). The evolution is described by the ODE (4.46) where the constant F∞ is given

by (4.52).

We define ’the distance of adaptation’ L as the distance for which the wavenumber

goes from the initial value k0 to the following value that is sufficiently close to k∞ :

k = k1 = k∞ ± (a∞)
2
. (5.1)

Here the sign is positive if wave and current propagates in the same direction, and

negative otherwise. The distance L is calculated from (4.47), taking k = k1 as the

end of the integration boundary:

L = ±
∫ k1

k0

√
F2 (a (k) , k, Pc (k) , η0 (k))

F∞ −F0 (a (k) , k, Pc (k) , η0 (k))
dk, (5.2)

with negative sign if a wave propagates in the same direction as the current, and

positive sign otherwise.

In the following we will show that at and after x = L, all residues of the governing

equations (4.1)-(4.6) are either O
(
ε2
)

or zero. In the model, the residues of the

kinematic boundary condition, continuity equation, and bottom boundary condition,

are already O
(
ε2
)

or zero, while the residues of the dynamic boundary condition and

the Euler equations are related to ∆k = k (x) − k∞ by (4.53)-(4.57). Since k (x)

monotonically increases/decreases towards the asymptotic value k∞, then for x ≥ L

we have

|∆k| = |k (x) − k∞| ≤ (a∞)
2

= O
(
ε2
)

(5.3)

Then, from (4.53)-(4.57) it follows that Rdbc, RE1 , and RE2 are O
(
ε2
)

for x ≥ L.

5.3 Uniform current

In this section, predicted increase/decrease of the wave length, the wave amplitude,

the mean free surface elevation, and the magnitude/curvature of the current profile

are studied both for adverse and following uniform currents.

Equations for the parameter dynamics will be given first. Then for various com-

binations of wave and current, predicted changes are calculated numerically and the

results are presented and analyzed. Afterwards comparison with laboratory experi-

ments found in the literature will be given.

5.3.1 Equations for the parameter dynamics for uniform current

As a model for the current during the adaptation, we will take

U = Uc + Pc,

where Uc gives the initial uniform current that exists in the absence of waves. The

unknown parameter Pc describes a (depth-independent) change of the uniform current

that is necessary for accommodating the presence of waves in the basin.
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5. Case Studies and Comparison with Experiments

Taking the wave amplitude a, the wave number k, the mean free surface elevation

η0, and the change of the current Pc as the varying parameters, the model describing

the free surface elevation η, the velocities (u,w), and the pressure p are given by

(4.18)-(4.21), where ŵ, û, p̂, p̄2 are given by (2.30), (2.28), (2.29), and (4.24):

η = a cos (θ (x, t)) + η0, (5.4)

u = (Uc + Pc) + a
(ω − k (Uc + Pc))

sinh (k (1 + η0))
cosh (k (z + 1)) cos θ (x, t) (5.5)

w = −dPc
dx

(z + 1) +
a (ω − k (Uc + Pc))

sinh (k (1 + η0))
sinh (k (z + 1)) sin θ (x, t)−

d

dx

(
a (ω − k (Uc + Pc))

k sinh (k (1 + η0))

)
sinh (k (z + 1)) cos θ (x, t)−

(
ak′ (ω − k (Uc + Pc))

k sinh (k (1 + η0))

)
(z + 1) cosh (k (z + 1)) cos θ (x, t) , (5.6)

p = −z + η0 + a
(ω − k (Uc + Pc))

2

k (x) sinh (k (1 + η0))
cosh (k (z + 1)) cos θ (x, t)−

a2

2

(ω − k (Uc + Pc))
2

sinh2 (k (1 + η0))
sinh2 (k (z + 1)) , (5.7)

where the phase θ (x, t) is related to the wave number and wave frequency by

∂xθ = k (x) , ∂tθ = −ω.

Here ω is prescribed and is independent of time and space.

The four parameters are related by four equations (4.32), (4.33), (4.41) and (4.43).

For this case of uniform current these equations are summarized here:

(Uc + Pc) (1 + η0) +
a2

2

(ω − k (Uc + Pc))

tanh (k (1 + η0))
= I0, (5.8)

(
1

2
+ (Uc + Pc)

2
+
η0
2

)
(1 + η0) +

a2




(ω − k (Uc + Pc))
2

2k
+ U (ω − k (Uc + Pc))

tanh (k (1 + η0))
− 1

4


+

a2

4
(1 + η0)

k tanh (k (1 + η0)) − 3 (ω − k (Uc + Pc))
2

sinh2 (k (1 + η0))
= M0, (5.9)

a

k
= α, (5.10)
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5.3. Uniform current

and

F0 (a, k, Pc, η0) + F2 (a, k, Pc, η0)

(
dk

dx

)2

= F∞, (5.11)

where

F0 =

(
(Uc + Pc)

3

2
+ (Uc + Pc) η0

)
(1 + η0)+

a2

4

(
2 (Uc + Pc)

3
k3 + ω2 − 3ωk2 (Uc + Pc)

2

k sinh2 (k (1 + η0))

)
(1 + η0)+

a2

4

(
ω3 − k3 (Uc + Pc)

3

k2 tanh (k (1 + η0))
+

2 (ω − k (Uc + Pc)) η0
tanh (k (1 + η0))

−
)

+

a2

4

(
− 2k (Uc + Pc)

sinh (2k (1 + η0))
− k (Uc + Pc) η0

tanh (k (1 + η0))

)
, (5.12)

F2 =
a2

4

ω3 + 2k3 (Uc + Pc)
3 − 3ωk2 (Uc + Pc)

2

k sinh2 (k (1 + η0))
−

a2η0
2

(ω − k (Uc + Pc))

tanh (k (1 + η0))
+

a2

4

(
2k (Uc + Pc)

sinh (2k (1 + η0))
+
ω3 − k3 (Uc + Pc)

3

k2 tanh (k (1 + η0))

)
. (5.13)

The interaction will approach equilibrium values of the parameters

P∞ = (a∞, k∞, η0
∞ , Pc

∞) ,

which are the values of a, k, Pc, and η0 resulting from the adaptation process. This

equilibrium gives a solution of the homogeneous problem. For uniform current, this

solution is identified by the dispersion relation which relates (nonlinearly) k∞, P∞
c ,

and η∞0 :

(ω − k∞ (Uc + P∞
c ))

2 − k∞ tanh (k∞ (1 + η∞0 )) = 0. (5.14)

Summarizing, the equilibrium values of the parameters a∞, k∞, P∞
c , η∞0 are

calculated from four algebraic equations (of which three are nonlinear): (5.8), (5.9),

(5.10), and (5.14) above. The constants I0, M0, α and F∞ are calculated using the

values of the parameters at x = 0 or at x→ ∞ :

I0 =

∫ 0

−1

Uc (z)dz,

M0 = M (a0, k0, 0, Pc (0)) ,

α =
a (0)

k (0)
,

F∞ = F0 (a∞, k∞, η∞0 , P∞
c ) .
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5. Case Studies and Comparison with Experiments

Notice that (5.8), (5.9), and (5.14) are nonlinear algebraic relations for the pa-

rameters. This means that although the wave is linear, the adaptation process and

the interaction are nonlinear.

5.3.2 Changes of the parameters and the distance of adaptation - Case studies

For this case of uniform current, we present some numerical results with wave and

current conditions that are realistic for hydrodynamic laboratories. Characteristics of

the initial wave and current are given in Table 5.1, for wave and current propagating

in the same and opposite direction. Results of the adaptation process are presented

in Table 5.2 and Table 5.3.

Case a0 ω k0 Uc Case a0 ω k0 Uc
1a 0.01 2.2 4.841 0.06 3a 0.01 0.6 0.639 -0.3

1b 0.02 2.2 4.841 0.06 3b 0.02 0.6 0.639 -0.3

1c 0.04 2.2 4.841 0.06 3c 0.04 0.6 0.639 -0.3

2a 0.01 2.2 4.841 0.12 4a 0.01 0.8 0.896 -0.3

2b 0.02 2.2 4.841 0.12 4b 0.02 0.8 0.896 -0.3

2c 0.04 2.2 4.841 0.12

Table 5.1: Properties of initial wave and current, for case studies with uniform current.

Results are reported in Table 5.2 and Table 5.3

Case Pc (0) a∞ k∞ P∞
c η∞0 L ∆a

L
da
dx

×103 x = 0 x = L

1a −0.00010 0.0080 3.875 −0.00006 −0.0008 0.113 -0.018 -0.036 -0.00028

1b −0.00038 0.0160 3.878 −0.00025 −0.0030 0.111 -0.036 -0.072 -0.00114

1c −0.00153 0.0321 3.887 −0.00101 −0.0101 0.107 -0.074 -0.145 -0.00459

2a −0.00008 0.0068 3.275 −0.00004 −0.0080 0.199 -0.016 -0.027 -0.00018

2b −0.00032 0.0135 3.276 −0.00016 −0.0317 0.195 -0.033 -0.054 -0.00074

2c −0.00130 0.0271 3.280 −0.00065 −0.1248 0.191 -0.068 -0.110 -0.00297

Table 5.2: Predicted results of the adaptation process for cases with following uniform

currents (Cases 1a - 2c) in Table 5.1.

It is explained in Chapter 4 that the adaptation of a (x) , k (x) , η0 (x) , and Pc (x)

can be represented by a curve in a four dimensional space. In Figure 5.1 and 5.2 we

give two examples of this adaptation curve when projected to the planes k vs a, k vs

Pc, η0 vs k, and η0 vs Pc. Figure 5.1 corresponds to case 2c in Table 5.1 and 5.2 while

Figure 5.2 corresponds to case 4a in Table 5.1 and 5.3.
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5.3. Uniform current

Case Pc (0) a∞ k∞ P∞
c η∞0 L ∆a

L
da
dx

×103 x = 0 x = L

3a 0.00007 0.0169 1.076 0.00018 −0.0480 0.097 0.071 0.111 0.00298

3b 0.00028 0.0338 1.078 0.00072 −0.1942 0.088 0.157 0.222 0.01187

3c 0.00112 0.0680 1.085 0.00294 −0.8122 0.077 0.364 0.442 0.04665

4a 0.00007 0.0239 2.143 0.00047 −0.1599 0.459∗ 0.030∗ 0.135 0.00091∗

4b 0.00030 0.0489 2.189 0.00200 −0.6852 0.308∗ 0.094∗ 0.269 0.00331∗

Table 5.3: Predicted results of the adaptation process for cases with adverse uniform

currents (Cases 3a - 4b) in Table 5.1.
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Figure 5.1: Wave on following uniform current. The evolution curve projected to the

a vs. k, U vs. k, η0 vs. U, and η0 vs. k planes.

5.3.2.1 Following current

In Table 5.2 we present numerical results for three different initial wave amplitudes

and two initial current values (cases 1-2 in Table 5.1). The results in Table 5.2 and

Figure 5.1 show that when wave and current propagate in the same direction the

wave amplitude decreases, the wave length increases, the mean free surface elevation

decreases, and the current after the adaptation is smaller than the initial (wave-free)
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Figure 5.2: As Figure 5.1, but for wave on adverse uniform current.

current Uc.

We observe, as can be expected, that the higher the initial current Uc is, the smaller

a∞ and the longer λ∞ = 2π
k∞ are. It is also observed that the higher the initial current

Uc, the longer the distance of adaptation L and the larger the change in the mean

free surface elevation η0
∞. In these calculations, the distance of adaptation varies

between 10%−20% of the water depth. Expressed differently, the ratio between L and

the initial wave length λ0 = 2π
k0

varies between 0.08−0.16. This means that the largest

deformation of wave and current will occur within the distance of one wavelength.

In the last two-columns of Table 5.2 we present the value of da
dx both at the start

of the interaction, x = 0, and at the end of the defined ’adaptation region’, x = L.

The value of da
dx can be calculated exactly from the ODE (4.46) and relation (4.40).

We observe that if a0 increases two times then da
dx

∣∣
x=0

increases two times as well and
da
dx

∣∣
x=L

increases four times. This shows that at x = 0 da
dx is O (ε) , and at x = L it

is O
(
ε2
)
. Since da

dx is continously and monotonically decreasing in x, this means that

between x = 0 and x = L the size of da
dx decreases from O (ε) to O

(
ε2
)
. This result

is consistent with requirement (4.26), which is the condition in the model that has to

be satisfied to consistently work with O (ε) perturbation (i.e. linear wave theory).

The value ∆a
L reported in Table 5.2 can be interpreted as an average da

dx in the

interval x ∈ [0, L] . Numerical results shows that this value is a bit smaller than O (ε) .

62



5.3. Uniform current

5.3.2.2 Adverse current

In Table 5.3 we present numerical results for three different initial wave amplitudes

and two values of the wave frequency (cases 3-4 in Table 5.1).

As expected, the wave amplitude increases, the wave length decreases, the mean

free surface elevation decreases, and the current U resulting from the adaptation

process is larger than the wave-free current Uc. The distance of adaptation L varies

between 7% − 46% of the water depth, and the ratio between L and the initial wave

length λ0 = 2π
k0

varies between 0.007− 0.07.

Wave blocking is a phenomena that is associated with adverse current, U < 0.

Experiment on wave blocking was conducted by Suastika et al. [62]. The blocking

frequency is defined as the value of ω for which dω
dk is zero. From the dispersion

relation (5.14) we see that if ω is smaller than the blocking frequency then one value

of ω corresponds to two values of k∞: one related to the ’normal case’ where dω
dk ≥ 0

and ω
k > 0 and the other one that describes a shorter wave is related to the case

where dω
dk ≤ 0 but ω

k > 0. In Table 5.3 we only present the value of k∞ related to the

’normal case’.

We observe interesting behavior for waves with frequency close to the wave-

blocking frequency (cases 4a-4b in Table 5.3). We observe that waves of case 4 are

amplified much more than waves with a smaller frequency (case 3). We also observe

that the distance of adaptation L is much larger for waves with frequency close to the

blocking frequency. This means that these waves need a longer distance to adapt to

the presence of current. Maybe this is related to the speed of the wave energy, which

is slower near the blocking frequency.

Remark 5.3.2.1 For cases 4a and 4b, we found that the square-root in formula

(5.2) gives an imaginary value for k > k∗1 , with k∗1 = 2.119 for case 4a and k∗1 = 2.049

for case 4b. In Table 5.3, the value L for cases 4a-4b is calculated by taking k∗1 as

the upper boundary of the integral in (5.2). For these two cases k∗1 is smaller than

k1 defined in (5.1). It was found that for k > k∗1 , the numerator of the term inside

the square-root in (5.2) is smaller than 10−9. Thus higher-order terms (which are

neglected in this approximation) and a break-down of the assumption on the Ansatz

might change the character near the wave-blocking location.

In Table 5.3 we also present the values of da
dx at both x = 0 and x = L and the

value of ∆a
L . We observe that if a0 increases by a factor of two then da

dx

∣∣
x=0

increases

around two times, da
dx

∣∣
x=L

increases around four times, and ∆a
L increases a bit more

than two times. In other words, because a0 is O (ε) , we may say that da
dx

∣∣
x=0

is O (ε) ,
da
dx

∣∣
x=L

is O
(
ε2
)
, and the ’average’ ∆a

L less than O (ε). These results are consistent

with requirement (4.26).
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5.3.3 Comparison with experiments

An experiment using an adverse uniform current conditions conducted by Thomas

[69] shows the effect of the interaction on the wave amplitude and the wave length

(the change of the current was not reported). The experiment used one wave condi-

tion and with four different adverse current conditions. The wave has an amplitude

a0 = 0.0918 m and length λ0 = 2.246 m, which corresponds with a frequency ω = 5.027

rad/ s . The water depth is 0.57 m . In Table 5.4 we present comparisons of the mea-

sured and the predicted steady-states of the interaction. When compared with the

measured values from the experiment, the difference is small. The wave amplitude is

slightly underpredicted by the present model while the wave length is well predicted.

I0 a∞ (cm) λ∞ (m) Me

(cm / s) Me Mo D Me Mo D a∞λ∞

5.97 0.996 0.971 2.51% 2.143 2.124 -0.89% 0.0213

11.62 1.061 1.029 3.02% 2.007 2.004 -0.15% 0.0213

15.98 1.163 1.081 7.05% 1.896 1.906 0.53% 0.0221

20.30 1.202 1.1411 5.07% 1.820 1.814 -0.33% 0.0219

Table 5.4: Comparison with the experiment by Thomas [69]. In this experiment, the

wave volume of the initial wave is a0λ0 = 0.0206 m2 .

Me = measured, Mo = Model, D = difference

In Chapter 4, the model predicts that the ’wave volume’ aλ is conserved. This

means

a0λ0 = a∞λ∞. (5.15)

In the experiment by Thomas, a0λ0 = 0.0206 m2 . The value a∞λ∞ measured in the

flume is given in the last column of Table 5.4. In this measurement, the difference

between a0λ0 and a∞λ∞ is at most 7.3%.

An experiment on uniform current was conducted by Swan et al. [67]. In their

experiment, the water depth is 0.7 m . Detailed information on changes of wave and

current are reported in their paper. In Table 5.5 we summarize the experimental

results for a uniform current and compare with the prediction from our model. In

this experiment, Wave A interacted with a following uniform current Uc = 0.171 m/ s,

and Wave B interacted with an adverse uniform current Uc = −0.185 m/ s .

It is observed from Table 5.5 that the change of the current is predicted well, both

for cases with following and adverse current, with a relative error of 1.8%− 2%. The

wave properties are also predicted well for the experiment with favorable current,

but less good for the experiment with adverse current. We also calculate the ’wave

volume’ aλ measured in the laboratory experiment. In this experiment the difference

between a∞λ∞ and a0λ0 is 2.1% for the case with following current and it is 6.8%

for the case with adverse current
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Wave I0 2a∞ (m) a∞k∞ U∞ Measured

(m / s) Me Mo D Me Mo D Me Mo D a0λ0
a∞λ∞

A 0.171 0.083 0.0793 4.5% 0.22 0.2247 2.1% 0.1598 0.1626 1.8% 0.048 0.049

B -0.185 0.090 0.103 14.4% 0.23 0.2880 25.2% -0.1953 -0.1992 2.0% 0.059 0.055

Table 5.5: Comparison with an experiment by Swan et al. [67]. For Wave A, the initial

height is 2a0 = 0.1 m, the initial steepness is a0k0 = 0.33, and the period is 0.75 s .

For wave B, the initial height is 2a0 = 0.075 m, the initial steepness is a0k0 = 0.15,

and the period is 1 s . Me = Measured, Mo = Model, D = Difference.

Another experiment on uniform current was conducted in the wave-current (off-

shore) basin of the Maritime Research Institute Netherlands (MARIN), test no.

17710-1-OB (2002). An analysis of this experiment is reported by Margaretha [39]

and Voluer [75]. In that experiment waves are measured at several positions in the

basin, with and without current. The water depth is 1.12 m and the wave period

0.965 s giving the initial wave length (without current) 1.454 s . Two wave conditions

are tested: Wave A has amplitude 0.02 m and Wave B 0.04 m . A following uniform

current having speed 0.3 m / s(in the absence of waves) was generated. In Table 5.6

predictions from the present model are compared with the ensemble-average values of

the measurements. In this experiment the difference between a∞λ∞ and a0λ0 is 2.2%

for the case with smaller wave amplitude (Wave A) and it is 9.7% for the case with

higher wave amplitude (Wave B). We observe that changes of the wave properties are

predicted well by the model. Good agreement with MARIN’s experiment indicates

that the present model can be used for predicting wave and current that have to

be generated in order to get a desired wave-current environment in the wave-current

basin of MARIN.

Wave a∞ (m) λ∞ (m) Measured

Me Mo D Me Mo D a0λ0 a∞λ∞

A 0.0148 0.0146 -1% 2.009 1.948 -3% 0.02908 0.02973

B 0.0308 0.0286 -7% 2.071 1.945 -6% 0.05816 0.06379

Table 5.6: Comparison with MARIN experiment no.17710-1-OB (2002). Me = Mea-

sured, Mo = Model, D = Difference.

5.4 Depth-dependent Current

We will now discuss cases for which the current profile is non-uniform, and we are

also interested to investigate the change of the curvature of the current profile when

interacting with a wave. Since in the model we can only assign one parameter to
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describe the change in the current profile, we choose to model the deformation of the

current profile with a quadratic function parameterized by one parameter. We take

a quadratic shape function for which the largest change on the magnitude and the

gradient (i.e., the vorticity) of the current happens at the free surface, while there is

no change at the bottom, and the curvature of the current changes uniformly over

the depth.

Details on the parametric representation for the deformation of the current profile

will be given first for the specific case where the initial current profile is given by

a linear function. For various combinations of wave and current, the formulas are

treated numerically and the results are presented and analyzed.

Then we will present a comparison with laboratory experiments for currents with

nonlinear profile. We will compare predictions from the model with results from two

experiments reported by Kemp and Simons [29] and Klopman [33]. These experiments

used a current profile known to be turbulent: A shear-current with profile that is

almost linear near the free surface but is very curved near the bottom.

5.4.1 A parametric representation for the deformation of the current profile

In our model, the current profile during adaptation is given by (4.25), where

Uchange still has to be chosen. Results of laboratory experiments by Kemp and Simons

[29], Klopman [33], Swan [65], and Swan et al. [67], show that the deformation

seems to be nonlinear in the sense that the curvature of the current profile changes.

Therefore we took in the first instance

U
(1)
change = Pc (x) (z + 1)

2
, (5.16)

where Pc is a parameter that varies in the horizontal x−direction.

Later on, it turned out that an additional uniform shift of the current profile will

improve results from the model. This shift is taken to be due to the changing wave:

U
(2)
change = Pc (x) (z + 1)

2 ± (Uw (0) − Uw (x)) , (5.17)

where Uw is the wave mass-transport velocity,

Uw =
1

2
a2

√
k

tanh (k (1 + η0))
. (5.18)

The plus sign in (5.17) is chosen if wave and current propagate in the same direction;

otherwise the negative sign is chosen.

5.4.2 Case study: Linear currents

We will study the simplest case of shear-current, i.e. the case that the initial

current profile varies linearly over the depth. The profile of the initial current is given

by the following function

Uc (z) = U1 (z + 1) .
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5.4. Depth-dependent Current

The change of the current profile is taken to be of the form as given in (5.16) or (5.17).

We want to study the change of a linear current when interacting with a monochro-

matic wave, as well as the changes of the wave characteristics. The results are pre-

sented in Table 5.7 -5.8 for cases with following currents and in Table 5.9 -5.10 for

cases with adverse currents. An illustration is shown in Figure 5.3.
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Figure 5.3: Change of current profile, the horizontal axis is the magnitude of the

current, the vertical axis is the depth z. The initial current profile (linear current) is

given by the solid line; while the dotted line and the dashed line give the prediction of

the current profile in the presence of the wave using U
(1)
change and U

(2)
change, respectively.

Figures (A) and (B): following currents; Figure (C) and (D): adverse currents. The

initial wave amplitude and wave number (a0, k0) are given by (0.1, 3) for Figure (A),

(0.1, 1.5) for Figure (B), (0.04, 3) for Figure (C), (0.04, 1.5) for Figure (D).
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Model equations for the parameter dynamics are given by (4.32), (4.33), (4.41)

and (4.43). Since the curvature of the initial current is zero and since for this case

we do not expect a large change of the curvature of the current profile, we take

the irrotational-wave solutions (2.30) to approximate ŵ. The expressions for û, p̂

and p̄2 are calculated from (2.28), (2.29), and (4.24). The dispersion relation of the

homogeneous problem is approximated using formula (3.9).

In Table 5.7 and Table 5.9, U1 gives the magnitude and the slope of the initial

current, a0k0 gives the steepness of the initial wave. In Table 5.8 and Table 5.10 P∞
c

gives the change of the curvature of the current, η0
∞ gives the change of the mean

free surface elevation, ∆arel gives the relative change of the wave amplitude,

∆arel =
a∞ − a0

a0
,

and ∆ (ak)
rel

gives the relative change of the wave steepness

∆ (ak)
rel

=
a∞k∞ − a0k0

a0k0
.

5.4.2.1 Following currents

Characteristics of the initial wave and the initial current are given in Table 5.7.

Numerical results if the deformation of the current profile is modelled by U
(1)
change

(5.16) and U
(2)
change (5.17) are given in Table 5.7 and 5.8 respectively.

Case Wave-only Current Uchange given by (5.16 )

a0 k0 ω U1 a∞ ∆arel a∞k∞ ∆ (ak)rel η∞

0 × 103 P∞

c × 103

5a 0.025 3 2.985 0.05 0.0221 -11.5% 0.0588 -21.6% -0.00155 -1.203

5b 0.025 3 2.985 0.1 0.0200 -19.9% 0.0481 -35.9% -0.01971 -0.934

5c 0.025 1.5 1.358 0.05 0.0235 -6.1% 0.0330 -11.9% -0.01412 -1.038

5d 0.025 1.5 1.358 0.1 0.0223 -11.3% 0.0295 -21.4% -0.03244 -0.903

6a 0.05 3 2.985 0.05 0.0446 -10.8% 0.1192 -20.5% -0.00251 -4.897

6b 0.05 3 2.985 0.1 0.0402 -19.6% 0.0971 -35.3% -0.07303 -3.779

6c 0.05 1.5 1.358 0.05 0.0471 -5.9% 0.0665 -11.4% -0.05301 -4.181

6d 0.05 1.5 1.358 0.1 0.0445 -11.1% 0.0593 -21.0% -0.12603 -3.632

7a 0.1 3 2.985 0.05 0.0921 -7.9% 0.2544 -15.2% 0.03570 -21.187

7b 0.1 3 2.985 0.1 0.0820 -18.0% 0.2017 -32.8% -0.19947 -.15.857

7c 0.1 1.5 1.358 0.05 0.0953 -4.7% 0.1363 -9.1% -0.15694 -17.192

7d 0.1 1.5 1.358 0.1 0.0898 -10.3% 0.1209 -19.5% -0.44399 -14.854

Table 5.7: Characteristics of wave and current before interaction, for cases with fol-

lowing shear-currents. Also results from model for Uchange given by (5.16). The initial

current profile is given by Uc = U1 (z + 1).
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5.4. Depth-dependent Current

Uchange given by (5.17) da

dx

Case a∞ ∆arel a∞k∞ ∆ (ak) η∞

0 × 103 P∞

c × 103 L ∆a

L
x = 0 x = L

5a 0.0221 -11.4% 0.0588 -21.6% 0.00187 -1.628 0.12 0.0238 -0.0495 -0.00176

5b 0.0200 -19.9% 0.0482 -35.8% -0.00833 -1.626 0.33 0.0151 -0.0310 -0.00074

5c 0.0235 -6.1% 0.0330 -11.9% -0.01276 -1.120 0.05 0.0305 -0.0569 -0.00419

5d 0.0222 -11.3% 0.0295 -21.4% -0.02755 -1.199 0.14 0.0202 -0.0394 -0.00196

6a 0.0447 -10.7% 0.1196 -20.2% 0.00906 -6.509 0.06 0.0892 -0.1684 -0.01184

6b 0.0403 -19.4% 0.0975 -35.0% -0.02998 -6.501 0.17 0.0571 -0.1216 -0.00536

6c 0.0472 -5.8% 0.0665 -11.4% -0.04810 -4.817 0.03 0.0967 -0.1580 -0.02359

6d 0.0445 -11.1% 0.0593 -20.9% -0.10730 -4.796 0.08 0.0694 -0.1257 -0.01226

7a 0.0926 -7.4% 0.2573 -14.2% 0.05059 -25.991 0.02 0.370 -0.5197 -0.09603

7b 0.0827 -17.3% 0.2052 -31.6% -0.06709 -25.983 0.07 0.2471 -0.4986 -0.04207

7c 0.0954 -4.6% 0.1366 -9.0% -0.14500 -19.228 0.01 0.4600 -0.4323 -0.14666

7d 0.0899 -10.1% 0.1212 -19.2% -0.38210 -19.160 0.04 0.2525 -0.3881 -0.07646

Table 5.8: As Table 5.7, but for Uchange given by (5.17).

When using U
(2)
change the model predicts a larger value of P∞

c than when using

U
(1)
change. We observe that the magnitude and the slope of the current at the free

surface decrease in the presence of waves.

For both U
(1)
change and U

(2)
change the model gives the following predictions:

• For the same U1 and a0k0: the larger a0 is, the larger |P∞
c | is but the smaller∣∣∆arel

∣∣ and
∣∣∣∆(ak)

rel
∣∣∣ are.

• For the same U1 and a0: The larger a0k0 is, the larger |P∞
c | is and also the

larger
∣∣∆arel

∣∣ and
∣∣∣∆(ak)

rel
∣∣∣ are.

• For the same a0 and a0k0: The larger U1 is, the larger |P∞
c | ,

∣∣∆arel
∣∣ , and∣∣∣∆(ak)

rel
∣∣∣ are.

In other words, the model predicts that the current profile bends more with the

increase of the amplitude or the steepness of the current-free wave, as is to be expected.

Also both wave amplitude/steepness and curvature of the current change more if the

initial (wave-free) current has a larger slope or if the initial (current-free) wave has a

larger steepness.

The distance of adaptation L was also calculated. It turned out that by taking

U
(1)
change we get almost the same L as by taking U

(2)
change. In Table 5.8 the resulting L

for model (5.17) is reported. For cases with favorable current, the ratio between L

and the length of the initial wave is around 0.002−0.16.Observe also that an increase

of U1 or of the wave frequency (i.e. smaller wavelength λ0) results in an increase of

the distance L.

As in the case with a uniform current, in this case we also analyze the sizes of ∆a
L

and da
dx at both x = 0 and x = L. From Table 5.8 we observe that if a0 increases two
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times then da
dx

∣∣
x=0

increases around three times, da
dx

∣∣
x=L

increases around six times,

and ∆a
L increases around four times. In other words, because a0 is O (ε) , we may say

that da
dx

∣∣
x=0

is O
(
ε1.5
)
, da
dx

∣∣
x=L

is O
(
ε2.5
)
, and the ’average’ ∆a

L is O
(
ε2
)
. These

results are consistent with requirement (4.26).

5.4.2.2 Adverse currents

Characteristics of the initial wave and the initial current are given in Table 5.9.

Numerical results are given in Table 5.9 and Table 5.10.

Case Wave-only Current Uchange given by (5.16 )

a0 k0 ω U1 a∞ ∆arel a∞k∞ ∆ (ak)rel η∞

0 × 103 P∞

c × 103

8a 0.01 3 2.985 -0.05 0.0118 18.1% 0.0419 39.5% -0.00627 -0.395

8b 0.01 3 2.985 -0.1 0.0152 52.2% 0.0695 131.6% -0.03344 -0.753

8c 0.01 1.5 1.358 -0.05 0.0108 7.9% 0.0175 16.4% 0.00122 -0.231

8d 0.01 1.5 1.358 -0.1 0.0118 18.4% 0.0210 40.2% 0.00033 -0.289

9a 0.02 3 2.985 -0.05 0.0237 18.6% 0.0844 40.7% -0.02614 -1.598

9b 0.02 3 2.985 -0.1 0.0309 54.4% 0.1430 138.5% -0.14221 -3.122

9c 0.02 1.5 1.358 -0.05 0.0216 8.0% 0.0350 16.6% 0.00488 -0.925

9d 0.02 1.5 1.358 -0.1 0.0237 18.6% 0.0422 40.7% 0.00117 -1.158

Table 5.9: As Table 5.7, but for cases with adverse shear-currents.

Uchange given by (5.17) da

dx

Case a∞ ∆arel a∞k∞ ∆ (ak)rel η∞

0 × 103 P∞

c × 103 L ∆a

L
x = 0 x = L

8a 0.0118 18.2% 0.0419 39.6% -0.00742 -0.530 0.30 0.006 0.01344 0.00018

8b 0.0152 52.4% 0.0697 132.4% -0.04186 -1.244 3.37 0.002 0.00437 0.00004

8c 0.0108 7.9% 0.0175 16.4% 0.00090 -0.269 0.02 0.032 0.06235 0.00192

8d 0.0118 18.4% 0.0210 40.2% -0.00127 -0.384 0.19 0.010 0.01802 0.00043

9a 0.0238 18.7% 0.0846 41.0% -0.03119 -2.159 0.10 0.037 0.05678 0.00120

9b 0.0311 55.6% 0.1454 142.3% -0.18305 -5.298 1.14 0.010 0.02391 0.00052

9c 0.0216 8.0% 0.0350 16.6% 0.003572 -1.079 0.01 0.160 0.24413 0.01628

9d 0.0237 18.6% 0.0422 40.7% -0.00540 -1.547 0.04 0.093 0.18240 0.00804

Table 5.10: As Table 5.9, but here Uchange is given by (5.17).

As expected, wave and current behave differently than in the cases with following

currents: the magnitude and the slope of the current at the free surface increase in

the presence of waves. The wave amplitude and wave steepness increase, while the

wavelength decreases.

Similar behaviour as in the cases with following current are observed: first, when

using U
(2)
change the model results into a larger value for P∞

c than when using U
(1)
change.

Second, the model predicts that the current profile bends more with the increase
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of the amplitude or the steepness of the current-free wave, and both wave ampli-

tude/steepness and curvature of the current change more if the initial (wave-free)

current has a larger slope or if the initial (current-free) wave has a larger steepness.

Third, the higher U1 or the higher the wave frequency is (i.e. the smaller the wave-

length λ0 is) the longer the distance L is.

The ratio between L and the length of the initial wave is around 0.002−1.6. As in

the cases with adverse uniform currents, with adverse linear currents we also observe

that the predicted distance of adaptation L is much longer, and both wave amplitude

and wave steepness are amplified much more than if the wave frequency is close to

the blocking frequency (cases 8b and 9b).

We observe that ∆a
L ,

da
dx

∣∣
x=0

, and da
dx

∣∣
x=L

increase more than four times if a0

increases two times. This means that these three quantities are smaller than O
(
ε2
)
.

These results are consistent with requirement (4.26)

5.4.3 Nonlinear currents: comparison with laboratory experiments

For a depth-dependent current, we validate the model using results from two lab-

oratory experiments reported by Kemp and Simons [29] and Klopman [33]. Two

different approximations for the solution of the Rayleigh equation ŵ are used in the

model equations (4.32), (4.33), (4.41) and (4.43): in the first approximation we ap-

ply the irrotational-wave solution (2.30), and in the second one we apply the WKB

approximate solution (3.20). For both approximations, the dispersion relation is ap-

proximated by (3.9).

The results show that both when using the irrotational-wave solution (2.30) and

with the WKB approximate solution approximations (3.20) we get almost the same

results. This is because the irrotational wave solution is already close to the exact

solution for ŵ, although the curvature of the current profiles themselves are large near

the bottom. This is the reason why the WKB approximate solution does not give

much improvement to the model.

In Figure 5.4 and 5.5 comparisons with experimental results reported by Kemp

and Simons [29] and Klopman [33] are shown. We observe that the model gives a

better prediction if the deformation of the current profile is modelled with U
(2)
change

(5.17). The predicted current profile agrees with the experiment by Klopman and

the experiment by Kemp and Simons for smaller wave amplitude. However, when the

model is compared with the experiment by Kemp and Simons for higher wave am-

plitude, the predicted current profile only qualitatively agrees with the measurement.

This drawback could be caused by the fact that the current used in the experiment

is very strong (0.206 m/ s in water depth 0.2 m).

In Table 5.11 the predicted wave amplitude and wave length are shown, and com-

pared with the measured ones. It is shown there that except for Wave A, the wave

length and the wave amplitude are quite well predicted by the model, even for waves

with large amplitudes. We also calculated the value a0λ0 and a∞λ∞ from the mea-
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Wave H0 λ0 H∞ (m) λ∞ (m) Measured

(m) (m) Me Mo Dm Me Mo Dm a0λ0 a∞λ∞

A 0.0290 1.210 0.0207 0.0243 17.4% 1.426 1.448 1.5% 0.0175 0.0148

B 0.0378 1.212 0.0303 0.0317 4.6% 1.425 1.444 1.3% 0.0229 0.0216

C 0.0464 1.216 0.0394 0.0391 -0.8% 1.430 1.439 0.6% 0.0282 0.0282

D 0.0544 1.222 0.0444 0.0460 3.6% 1.433 1.434 0.07% 0.0332 0.0318

Table 5.11: Comparison with an experiment by Kemp and Simons [29]. Here H0 and

λ0 are the wave height and wave length when current is absent, H∞ and λ∞ are

the ones when current is present. Me = Measured, Mo = Model, Dm = Difference.

Predicted deformation on the current profile for Wave A and Wave D can be seen in

Figure 5.4.

surement because we would like to see how well the conservation of wave volume

(5.15) is verified by the experiment. The results show that except for Wave A, the

experimental results satisfy (5.15) well with differences 5.7% for wave B, 0% for wave

C, and 4.2% for Wave D. For Wave A, wave volume conservation is violated for almost

30%.

These comparison show good agreement between the model and laboratory ex-

periments for the type of current profile used in the two experiments (i.e. turbulent

current), in which most turbulence mixing happens near the bottom.

Remark 5.4.3.1 There is another type of current which is commonly asked to

be generated in a laboratory but is not yet compared with the proposed QHA model.

We call this type of current ’hurricane current’, i.e. current which is strongly sheared

near the free-surface with non-uniform vorticity distribution and is almost uniform

near the bottom. An experimental study on hurricane currents is reported by Swan

et al. [67], which provides good insights in the effect of wave-current interaction.

As hinted in their paper, a significant effect from the wave-induced mixing might be

that the wave motion encourages a transfer of energy into the turbulent components

of the flow field. Another experiment using hurricane current was done at MARIN

by van Dijk et al. [15]. It is indicated that a very sheared current does generates

a lot of vortices. Since for hurricane currents, it is expected that most mixing will

occur near the free surface and since at the present stage the QHA we propose does

not incorporate turbulent components, we did not compare the present model with the

experiment for hurricane currents by Swan et al. [67].

5.5 Conclusions

We apply the model explained in Chapter 4 to predict the increase or decrease

of the wave length, the wave amplitude, the mean free-surface elevation, and the
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Figure 5.4: Current profile, comparison with experiments reported by Kemp and

Simons [29]. In this experiment the water depth is 0.2 m and the wave period is 1

second. Left figures: a0 = 0.0272 m. Right figures: a0 = 0.0145 m. Upper figures:

using U
(1)
change. Lower figures: using U

(2)
change. Results from experiment are compared

with the QHA model for weakly nonlinear currents (denoted by solid lines) and with

the QHA model improved by WKB approximation (denoted by diamonds).

Model for the wave-free (initial) current:

Uc(z) = −0.75 + 0.9 sech (0.21z + 0.02)− 0.1 sech (8z + 9.36)− 0.14 sech (8z + 8.72)6.

magnitude or the curvature of the current profile for cases with uniform, linear, and

nonlinear currents.

The aim of this research is to give a practical method for hydrodynamic laborato-

ries like MARIN, to predicts the adaptation process and the changes in the generated

wave and current. By having an idea on changes that will happen on the generated

wave and current, the wave and current can be chosen in such a way that the inter-

action will give the desired wave-current environment that are requested for testing

model structures.

Two case studies are presented here: uniform current and linear current. For

adverse currents, we observe that the wave amplitude will be strongly amplified if the

wave frequency is close to the wave-blocking frequency (case 4 in Table 5.3 and cases

8b and 9b in Table 5.9-5.10). In the presence of current, these waves are amplified

much more (in agreement with the observation reported by Suastika et al. [62] [63]),
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Figure 5.5: Current profile, comparison with experiments reported by Klopman [33].

In this experiment the water depth is 0.5 m, the wave amplitude established when

current is present is 0.06 m and the wave period is 1.44 second. Left figures: favourable

current. Right figures: adverse current. Upper figures: using U
(1)
change. Lower figures:

using U
(2)
change. Results from experiment are compared with the QHA model for weakly

nonlinear currents (denoted by solid lines) and with the QHA model improved by

WKB approximation (denoted by diamonds).

Model for the wave-free (initial) current:

Uc = 0.07546 + 0.00029z − 0.03322z16 − 0.01229z2

and these waves need a longer distance to adapt to the presence of currents.

For cases with linear currents (both following and adverse) the model predicts that

a linear current will bend more with the increase of the amplitude or the steepness

of the current-free wave. Also results from calculation show that both wave ampli-

tude/steepness and curvature of the current change more if the initial (wave-free)

current has a larger slope or if the initial (current-free) wave has a larger steepness.

For nonlinear current, the model is compared with results from experiments on

turbulent currents conducted by Kemp and Simons [29] and Klopman [33]. The model

gives a better prediction if the deformation of the current profile is modelled by (5.17)

instead of (5.16).

When tested with experiments, the model gives good predictions to the changes on

both wave and current, for experiments with uniform currents reported by Thomas

[69], Swan et al. [67], Margaretha and Voluer [39] [75], and for experiments with

turbulent currents reported by Kemp and Simons [29] and Klopman [33].
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Chapter 6

An Experimental Study of Wave-Current Interaction in

the Offshore Basin of MARIN

A series of tests with waves encountering a uniform current was conducted in

the Offshore Basin of MARIN on 6 and 9 December 2002. The aim of the

experiment is two-fold. First, we want to study the behaviour of interacting

current and waves in the Offshore Basin of MARIN. Secondly, we want to

verify the applicability of the QHA model for pre-adjusting wave and current

in that basin.

6.1 Capturing the variation of wave and current

The QHA model is built on the assumption that in a laboratory basin wave and

current vary spatially, and the largest variation happens in a region where the wave

encounters the current.

There are two ways to capture the horizontal variation of the wave amplitude,

wavelength, mean free surface elevation, and current profile: using a series of wave

probes and current meters fixed at many different positions, or using a series of (a

few) wave probes and one current meter attached to a carriage, that will move in the

wave-opposing direction.

The first method implies that sufficient numbers of wave probes and current meters

are needed. For the experiment at MARIN, the model predicts that the adaptation

takes place in a length interval (much) smaller than the wavelength. Consequently, if

we use the first method, the distance between the probes must be small (e.g. 8 cm or

smaller). Then there is a risk that the recorded data will contain significant effects

from probe interference. In addition to this, since the exact location in the basin

where the wave and current meet is not known beforehand, we need to place many

probes in order to cover a part in the basin that certainly contains the ’adaptation

region’.

If we use the second method, the number of probes is reduced significantly and the

measurement easily covers any length in the basin, even the whole length of the basin.
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6. An Experimental Study at MARIN

Provided that the velocity of the carriage is recorded, from the recorded data we can

extract information on the wave amplitude, wave length, and the speed of the current

as functions of the horizontal direction. This method requires that the carriage is

able to move smoothly without generating extra vibrations or noise that will effect

the measurement data. The speed of the carriage depends on the number of wave

oscillations we want to capture in a certain length L (e.g. six wave oscillations per

16 cm length). For quasi-harmonic waves, we can show that the speed of the carriage

(denoted by γ) follows from:

γ =
Lω

2πN − Lkrel
, (6.1)

where ω is the constant wave frequency, L is the length of interest, N is the number of

wave oscillation per length L that will be captured when the probes ’sweep’ the basin,

and krel is a wavenumber significant to the problem of interest. In the experiment,

we take

krel = k∞,

where k∞ is the wave number of the steady interaction predicted by the model.

The implications of (6.1) are illustrated in Figure (6.1). The figure at the top is a

plot of the free surface elevation η (x, t) given by

η (x, t) = a (x) cos (K (x) − ωt) ,

where a (x) and K (x) are calculated using the QHA model, for one of the proposed

tests. The wave is plotted from x = 0 to x = L = 0.1713 m, and from t = 0 to t = 6 s .

Here L is the distance of adaptation predicted for the test case. The dark plane

intersecting the plot of η (x, t) illustrates the case that the probe moves from x = L

to x = 0 with a constant speed γ = 0.1713 m/ s; while the gray plane corresponds to

the case that γ = 0.0286 m/ s . The figures at the bottom are the recorded η (x, t (x))

for these two cases; the one at the right is for γ = 0.1713 m/ s while the one at the

left is for γ = 0.0286 m/ s . The variable x in the lower figures is related to the time t

by

t =
1

γ
(L− x) .

From this illustration, it is clear that the slower the speed of the probe, the larger

the number of wave oscillations recorded in a given length L. However, in practice a

carriage is not able to move smoothly if the speed is too slow. If this happens, the

recorded data will be corrupted by noise due to the carriage vibrations.

The amplitude a (x) and phaseK (x) can be extracted from the record of η (x, t (x))

by using, for example, the Hilbert transform:

a (xi) =

√
η (xi, t (xi))

2
+ η̂H (xi, t (xi))

2
,

K (xi) = tan−1

(
η̂H (xi, t (xi))

η (xi, t (xi))

)
,
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6.2. Set up of the experiment

Figure 6.1: An illustration of the wave elevation recorded by a probe moving from

x = L to x = 0 with speed γ = 0.1713 m/ s (the dark plane at the right, leading

to the signal at the bottom right) and γ = 0.0286 m/ s (the gray plane at the left,

leading to the signal at the bottom left).

where η̂H is the Hilbert transform of η. The Hilbert transform is related to the actual

data by a 90◦ phase shift at each frequency contained in the signal η (xi, t (xi)).

6.2 Set up of the experiment

6.2.1 Basin set up

The basin set-up is illustrated in Figure 6.2. Only the wavemakers at the west

side were used. Wavemakers at the South side were not operated, but their angles

were adjusted such that they formed a fixed vertical wall. The water depth was
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6. An Experimental Study at MARIN

Figure 6.2: Layout of the basin: top view

1.12 m, which means that only the first layer of the current inlet system was used. A

cross-section of the basin for this experiment is illustrated in Figure 6.3. See Chapter

1 for general information on the current circulation system.

Figure 6.3: Layout of the basin: side view

Figure 6.4 illustrates the arrangement of the wave probes (the gray dots denoted
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6.2. Set up of the experiment

by CL, CLA, N, S) and the current meter (the black dot) attached to the carriage.

A photograph of this arrangement is given in Figure 6.5.

Figure 6.4: Arrangement of the probes

 

Figure 6.5: Photograph of the probes.

For all tests, the ratio between the wave length and the water depth is smaller than

0.5. This means that the experiment was executed with deep-water wave conditions.

In other words, direct bottom effects on the waves can be neglected.

79



6. An Experimental Study at MARIN

6.2.2 Measuring devices

The waves probes used in this experiment are electronic wave probes. The wave el-

evation is determined from the measured change of conductivity, which is proportional

to the immersion depth.

To measure the flow velocities, an electro-magnetic current meter was used. This

device allows us to measure two velocity components simultaneously. We chose to

measure the horizontal (downstream) and the vertical velocity components. An

electro-magnetic current meter measures velocities using Faraday’s Law, which states

that a conductor (water) moving in a magnetic field (generated by the probe) pro-

duces a voltage that varies linearly with the flow velocity. Electrodes in the probe

detect the voltages generated by the flowing water. Performance of electro-magnetic

current meters depends on the shape of the probe, location of the electrodes on the

probe, and its electronics. MARIN reports that their current meter is accurate up to

2.5 mm / s [44].

6.2.3 Proposed tests

Properties of the current-free waves in the experiment are:

• wave A: T = 0.965 s, ω = 6.51rad/ s, a = 0.04 m, λ = 1.45 m

• wave B: T = 0.965 s, ω = 6.51rad/ s, a = 0.02 m, λ = 1.45 m,

and of the wave-free current:

• Uniform current U = 0.3 m / s .

Here T is the wave period, ω is the wave frequency (2π/T ), a is the wave amplitude,

and λ is the wave length.

All tests were sampled at 50 Hz. Table 6.1 shows all tests that were executed

with the corresponding test conditions. Six tests were assigned for each wave-current

condition in order to measure the flow velocities at six different elevations.

6.2.4 Test procedures

6.2.4.1 Calibration of the wave conditions (tests no. 204∗ and 207∗)

Without current, the wavemakers were adjusted until the desired current-free wave

was obtained. The waves were recorded for 175− 270 seconds at both locations, 17 m

and 2 m from the wavemakers (see Figure 6.2). Information given to the wavemakers

was stored and used again when we did experiments with current.
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6.2. Set up of the experiment

Test Condition Position (m) a (m) Carriage Speed

101002 Current only x = 17, z = −0.10 0 0

101003 Current only x = 17, z = −0.25 0 0

101004 Current only x = 17, z = −0.50 0 0

101005 Current only x = 17, z = −0.70 0 0

101006 Current only x = 17, z = −0.90 0 0

204002 Wave only x = 17 0.04 0

204003 Wave only x = 2 0.04 0

207001 Wave only x = 17 0.02 0

207002 Wave only x = 2 0.02 0

304002 Wave+Current x = 17 . . . 2, z = −0.08 0.04 0.23 m/ s

304003 Wave+Current x = 17 . . . 2, z = −0.17 0.04 0.23 m/ s

304004 Wave+Current x = 17 . . . 2, z = −0.32 0.04 0.23 m/ s

304005 Wave+Current x = 17 . . . 2, z = −0.10 0.04 0.02 m/ s

304007 Wave+Current x = 17 . . . 2, z = −0.20 0.04 0.02 m/ s

304009 Wave+Current x = 17 . . . 2, z = −0.50 0.04 0.02 m/ s

307001 Wave+Current x = 17 . . . 2, z = −0.08 0.02 0.23 m/ s

307003 Wave+Current x = 17 . . . 2, z = −0.17 0.02 0.23 m/ s

307004 Wave+Current x = 17 . . . 2, z = −0.32 0.02 0.23 m/ s

307006 Wave+Current x = 17 . . . 2, z = −0.10 0.02 0.02 m/ s

307008 Wave+Current x = 17 . . . 2, z = −0.20 0.02 0.02 m/ s

307009 Wave+Current x = 17 . . . 2, z = −0.50 0.02 0.02 m/ s

Table 6.1: Description of all tests

6.2.4.2 Calibration of the current conditions (tests no. 101∗)

Having done all tests for both wave A and wave B in the current-free environment,

we switched-off the wavemakers and generated the proposed wave-free current. The

current was adjusted until the current profile is nicely uniform from the still water

level to the depth z = −0.5 m. In this experiment, the current was measured at the

middle location (i.e. 17m after the wavemakers) and at 5 different depths: −0.1 m,

−0.25 m, −0.50 m, −0.70 m, and −0.90 m.

6.2.4.3 Wave and current (tests no. 304∗ and 307∗)

After calibrating the current conditions, we continued with experiments on wave

and current. In these experiments, the current was running continuously - while

the wavemakers were switched-on and off. Recorded data were: surface elevations

recorded by 4 wave probes, the horizontal and the vertical velocities recorded to-

gether by one current-meter, and the speed of the carriage. Figure 6.4 illustrates the

arrangement of the wave probes and the current meter.
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6. An Experimental Study at MARIN

The experiment was designed as follows:

1. The carriage was placed such that the central wave probe (i.e. probe CL) was

located at x = 17 m (see Figure 6.2). At this location data was recorded for 100

seconds in the absence of waves.

2. Still recording data, we switched on the wavemakers and continued recording

for another 100 seconds at that location.

3. Then we run the carriage forward (toward the wavemakers). Data was still

recorded.

4. The carriage stopped when it reached the position x = 2 m (See Figure 6.2).

Still operating the wavemakers, at this position the data was still recorded for

100 seconds.

5. Then we stopped the wavemakers but keep on recording data for some more

time.

6.3 Predicted Values and Expected Dynamics

6.3.1 Wave condition A

The model predicts that the uniform current U will decrease to 0.2979 m/ s, the

wave amplitude a will decrease to 0.0293 m and the wave length λ = 2π
k will increase

to 1.985 m. The mean free surface elevation is predicted to decrease 0.0000563 m.

The distance of adaptation L is predicted to be 0.1677 m. During the adaptation, the

wave amplitude and the wave length are related in such a way that the ’wave volume’

(the wave amplitude times the wave length) is conserved.

6.3.2 Wave condition B

In the presence of this wave, the uniform current will decrease to U = 0.2994 m/ s.

The wave amplitude a will decrease to 0.0146 m and the wave length λ = 2π
k will

increase to 1.988 m. The mean free surface elevation η0 is predicted to decrease

0.0000013 cm. The distance of adaptation L is predicted to be 0.1713 m.

6.4 Results and Data Analysis

All results are documented in Report 17710-1-OB, in which they are presented

using Froude scale 50. This means that lengths are scaled with a factor 50, while

times and velocities are scaled with a factor
√

50. Results reported in this dissertation

take the original (unscaled) values.
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6.4. Results and Data Analysis

6.4.1 Wave-only conditions

Tests no. 204∗ and 207∗ were designed for calibrating the wavemakers. Time

series of the surface elevation recorded at fixed positions, near the wavemaker and in

the middle of the basin, are presented in Figure 6.6 and 6.7.
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Figure 6.6: Part of the records of the surface elevation from probes N (dashed line),

CL (solid line), and S (dotted line). The horizontal axis refers to time (seconds) and

the vertical axis refers to the recorded surface elevation (in meter). Figures at the left

refer to measurements at x = 2 m, and the ones at the right refer to measurements at

x = 17 m.

To analyze the results of these measurements quantitatively, we present harmonic

analysis on the part of the time series from t = 40 s to t = 90 s in Table 6.2. The

considered time interval is free from waves reflected by the beach.

Remark 6.4.1.1 The wavelength predicted by the linear theory is 1.45 m.

From Table 6.2 we can calculate the difference between the wave amplitude mea-

sured at each position and the average amplitude. We found that the amplitude
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Test Wave Amplitude (m) wavelength

no. S CL N CLA Average STD (m)

204002 0.0380 0.0358 0.0378 0.0362 0.0382 0.00131 1.38

204003 0.0398 0.0372 0.0382 0.0362 0.0388 0.00152 1.24

207001 0.0192 0.0196 0.0192 0.0196 0.0195 0.00029 1.45

207002 0.0200 0.0192 0.0192 0.0188 0.0195 0.00055 1.41

Table 6.2: Harmonic analysis of tests no. 204002-207002
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Figure 6.7: As Figure 6.6, but for probes CL (solid line) and CLA (dotted line).

modulation for the large wave is around 6% in the y direction (S-CL-N), and 3% in

the x direction (CL-CLA); and for the small wave it is around 4% in the y direction

and 2% in the x direction. In Table 6.2 (and throughout this chapter) ”STD” stands

for the standard deviation. We conclude that the generated waves are good enough:

long crested and having the expected properties.
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6.4.2 Current-only condition

This condition is analyzed from the results of tests no. 101∗, and also from the

first part and the last part of tests no. 304∗ and 307∗ (i.e. the horizontal velocity

recorded during the time when the wavemakers were switched off).

In Figure 6.8 we present the horizontal velocity u (solid line, above) and the vertical

velocity w (dotted line, below) from test no. 101002, measured at z = −0.1 m and

plotted from time 100 second to 500 second. From this figure we see that the velocities

were not steady, due to turbulence. Average values for u and w are presented in Table

6.3, 6.4, and 6.5. In Table 6.3, STD stands for the standard deviation and CI stands

for 95% confidence interval of U . Assuming that these average values represent the

values of the current, we observe that in the absence of waves the established current

profile was quite uniform: from half of the water depth to the free surface the variation

is not larger than 7%.

Notice that near the water surface, the (average) horizontal velocity at 2 m from

the wavemakers was much smaller than the expected strength of the current (i.e.,

0.3 m / s). This means that at x = 2 m, the injected currents had not yet fully devel-

oped.
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Figure 6.8: The horizontal velocity U (above) and the vertical velocity W (below)

recorded during test no. 101002. The current meter was placed at z = −0.1 m. The

horizontal axis refers to time (seconds) and the vertical axis refers to the velocity

(m / s2)

6.4.3 Combined wave-current conditions

After calibrating the waves and the current separately, their interaction was in-

vestigated using the procedure explained in the previous section. We measured the

horizontal and vertical velocities, the surface elevations, and the speed of the carriage.

Data recorded from tests no. 304∗ and 307∗ consists of five parts. For consistency,

these parts are denoted as follows

I Data measured at x = 17 m, recorded in the absence of waves.
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Test no. z (m) U (m / s) W (m / s) STD for U STD for W CI of U

101002 −0.10 0.302 0.016 0.01958 0.01131 0.00349

101003 −0.25 0.294 0.010 0.02112 0.01474 0.00354

101004 −0.50 0.279 0.023 0.02268 0.01616 0.00380

101005 −0.70 0.259 0.021 0.02487 0.01641 0.00417

101006 −0.90 0.247 0.016 0.02335 0.01503 0.00392

Table 6.3: The average horizontal velocity U and the average vertical velocity W from

tests no. 101∗. The velocities were measured at 17 m from the wavemakers

Test No. Position z U (m / s) W (m / s) Test No. Position z U (m / s) W (m / s)

304002 −0.08 m 0.303 0.019 307001 −0.08 m 0.306 0.020

304005 −0.10 m 0.301 0.014 307006 −0.10 m 0.306 −0.029

304003 −0.17 m 0.300 0.015 307003 −0.17 m 0.299 0.019

304007 −0.20 m 0.311 −0.056 307008 −0.20 m 0.309 −0.021

304004 −0.32 m 0.296 −0.018 307004 −0.32 m 0.283 0.018

304009 −0.50 m 0.285 −0.053 307009 −0.50 m 0.286 −0.063

Table 6.4: As Table 6.3, for tests no. 304∗ and 307∗. Values in the table are ex-

tracted from records of the velocities measured at x = 17 m during the time when the

wavemakers were switched off.

Test No. Position z U (m / s) W (m / s) Test No. Position z U (m / s) W (m / s)

304002 −0.08 m 0.087 0.074 307001 −0.08 m 0.035 −0.096

304005 −0.10 m 0.065 −0.026 307006 −0.10 m 0.060 −0.032

304003 −0.17 m 0.094 −0.067 307003 −0.17 m 0.050 0.042

304007 −0.20 m 0.166 0.066 307008 −0.20 m 0.212 0.067

304004 −0.32 m 0.202 −0.072 307004 −0.32 m 0.080 0.017

304009 −0.50 m 0.246 −0.001 307009 −0.50 m 0.327 0.028

Table 6.5: As Table 6.4, for velocities measured at x = 2 m

II Data measured at x = 17 m, recorded in the presence of waves.

III Data recorded in the presence of waves during the time interval when the car-

riage was moving from x = 17 m to x = 2 m.

IV Data measured at x = 2 m, recorded in the presence of waves.

V Data measured at x = 2 m, recorded in the absence of waves.
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In Figure 6.9 these parts are identified by plotting together the speed of the car-

riage with one of the records of the surface elevation. The free surface elevation η

recorded by the four probes, CL, CLA, N, and S, are presented in Figure 6.10 (test

no. 307001) and Figure 6.11 (test no. 307008), also denoting Parts II, III, and IV.
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Figure 6.9: One of the records of the surface elevation, captured by a moving probe.

The whole signal consists of five parts, as indicated in this figure.
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Figure 6.10: Results from test. no. 307001. The free surface elevation η recorded by

the four probes CL, CLA, N, and S. Parts II, III, and IV are denoted in this figure.

It is surprising to see that the regularity of the wave was destroyed by the presence

of current. In the presence of current the surface elevation measured by probes CL,

N, and S were different from each other, even when measured at fixed positions (see

parts II and IV of time-series presented in Figure 6.10 and 6.11).
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Figure 6.11: As Figure 6.10, for test no. 307008.

Analysis on possible causes of time-space modulation of the waves are reported in

[39] and [75]. From these reports, we conclude that the observed modulation is not

due to:

1. Waves reflected by the beach. The time which is needed by the wave energy to

reach a certain position in the basin, go to the beach and come back to that

position (neglecting the possible delay at the beach) is approximately

treflection = t0 +
LA
cinc
g

+
LB
cinc
g

+
LB
crefg

,

where t0 is the time when the wavemaker was switched on (t0 = 100 s), LA is

the distance to the wavemakers, LB is the distance to the beach, cinc
g is the

group velocity of the incoming wave:

cinc
g =

d

dk

(√
gkinc tanh (kinch) + kincU

)
,

and crefg is the group velocity of the reflected wave:

crefg =
d

dk

(√
gkref tanh (krefh) − krefU

)
,

kinc and kref are the wave number of the incoming wave and the reflected wave

(assuming that the frequency of both waves are the same). Approximately, by

taking U = 0.3 m / s, treflection for x = 17 m and x = 2 m is given by treflection =

228 s and treflection = 288 s, respectively. This means that the part of the signal
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related to measurement at x = 17 m (i.e. part II) does not contain reflected

waves. Therefore the wave-amplitude modulation observed at this part of the

signal is not due to the reflected waves.

2. Geometry of the basin floor. Lengths of both current-free wave and current-

effected wave, which are given in Table 6.6-6.9, are smaller than twice of the

water depth. This means that theoretically, we have deep water condition. In

other words we assume that the bottom of the basin does not have significant

influences on the wave at the free surface.

We found that the observed modulation is due probably to:

1. Unsteady current. Figure 6.8 shows one record of the velocities measured at

a fixed position at x = 17 m, in the absence of waves. The recorded current

fluctuates in time. If a wave enters a region with an unsteady current, the wave

frequency tends to be unsteady as well. Even more, the current field might also

be spatially fluctuating, e.g. by large eddies moving through the basin.

2. Walls separating neighbouring segments of the current inlets. As shown in Fig-

ure 1.4, along the side where the current is injected, all layers of the inlets are

segmented by thin walls. Each segment is 3.6 m long. Therefore the current

must have a variation in the transversal (y) direction, as illustrated in Figure

6.12. This idea was confirmed by de Wilde [79] who made an experiment on

the characteristics of currents in the offshore basin of MARIN. Voluer [75] re-

constructed the local representation of the free surface elevation, using data of

calculated significant wave heights from parts of records related to fixed-probes

measurement at x = 17 m given in Table 6.6 and 6.8. The free surface elevation

was approximated like

η = a cos

(
ωt− kx+ φ0 cos

(
2π

L0
(y − y0)

))
,

where a, φ0, L, and y0 are approximated from the measurements. He found that

the best value for the length L0 is about 4 m . This finding and the fact that

near the inlets the current has a transversal variation of length that is equal

to the length of the segments (i.e., 3.6 m) strengthen the claim that transversal

modulation suffered by initially-regular waves must be due to the transversal

variation of the current.

In Table 6.6, 6.7, 6.8, and 6.9 we present the significant wave height (divided by

two) and the wavelength for different measurements. The significant wave height is

given by the average height of the highest one-third of the waves. The wavelength

is calculated from parts II and IV of the records measured at probes CL and CLA.

Precision of the calculated wavelength is about 0.1 m, so the accuracy is approximately

95%.
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17 m


Transversal


variation


of


the
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Figure 6.12: Illustration of the transversal variation of the current near the inlets

In Table 6.10 and 6.11 we present ensemble-average and standard deviation of

the significant wave heights and wave length (for wave A and wave B, respectively)

presented in Table 6.6-6.9. As shown in these Table, the ensemble average values are

compared to the amplitudes of both wave A and wave B measured in the absence

of current. For each wave, the ensemble average gives the average values of wave

properties measured at different time and positions.

Remember that the probes started at x = 17 m and stopped at x = 2 m. Data

logged at x = 17 m does not contains reflected waves, while the one logged at x = 2 m

contains waves reflected from both the beach and the wavemakers plus waves with

evanescent modes. Assuming that those waves give 10% contribution to the wave

height, then at x = 2 m the height of the real incoming wave must be about 10% less

than what was measured.

Changes on wave and current predicted by the QHA model are given in Section 6.3

of this Chapter. Assuming that the ensemble-average values presented in Table 6.10
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Test no. 1
2 (significant wave height) at x = 17 m Wave

Wave N Wave CL Wave S Wave CLA length

307001 0.016030 0.011579 0.015051 0.011812 1.9346

307003 0.014260 0.011125 0.013362 0.012230 2.1629

307004 0.016554 0.015136 0.013992 0.016101 1.9940

307006 0.015678 0.011967 0.014112 0.012888 2.0016

307008 0.018901 0.019735 0.013409 0.018071 1.9841

307009 0.020277 0.015644 0.014512 0.013134 1.9754

Average wave length (±5% error) 2.0088

Table 6.6: Significant wave height and wave length for wave B, measured in the

presence of current at x = 17 m.

Test no. 1
2 (significant wave height) at x = 2 m Wave

Wave N Wave CL Wave S Wave CLA length

307001 0.021789 0.033415 0.028013 0.034332 1.2916

307003 0.023214 0.037340 0.027111 0.034719 1.3153

307004 0.021236 0.034788 0.027945 0.034211 1.2831

307006 0.019680 0.034874 0.027385 0.034421 1.3175

307008 0.023632 0.029378 0.035012 0.024872 1.2404

307009 0.022020 0.031488 0.027195 0.030680 1.2847

Average wave length (±5% error) 1.2888

Table 6.7: As Table 6.6, for data measured at x = 2 m.

Test no. 1
2 (significant wave height) at x = 17 m Wave

Wave N Wave CL Wave S Wave CLA length

304002 0.029366 0.026897 0.034002 0.028663 2.0143

304003 0.029140 0.028856 0.032430 0.028838 2.0017

304004 0.031933 0.029830 0.029959 0.030547 2.0454

304005 0.031188 0.032079 0.029857 0.034058 2.1698

304007 0.034050 0.032749 0.026320 0.032640 2.0986

304009 0.039273 0.031507 0.021599 0.032832 2.0956

Average wave length (±5% error) 2.0709

Table 6.8: As Table 6.6, for wave A.
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Test no. 1
2 (significant wave height) at x = 2 m Wave

Wave N Wave CL Wave S Wave CLA length

304002 0.050214 0.058879 0.061805 0.058322 1.3317

304003 0.043780 0.053144 0.066249 0.049375 1.3571

304004 0.045962 0.059323 0.062874 0.061733 1.3653

304005 0.050278 0.066744 0.057250 0.061347 1.4010

304007 0.042875 0.049518 0.067834 0.044893 1.5049

304009 0.050427 0.045282 0.066957 0.048738 1.4419

Average wave length (±5% error) 1.4003

Table 6.9: As Table 6.6, for wave A measured at x = 2 m.

Assemble-average; properties of wave A

Amplitude (m) Length (m)

x Without With current Without With

current Mean STD current current

2 m 0.03785 0.055158 0.008174 1.3788 1.4003

17 m 0.03695 0.030776 0.003364 1.2399 2.0709

Table 6.10: Global properties of wave A.

Assemble-average; properties of wave B

Amplitude (m) Length (m)

x Without With current Without With

current Mean STD current current

2 m 0.0193 0.029115 0.005351 1.4539 1.2888

17 m 0.0194 0.014773 0.002470 1.4111 2.0088

Table 6.11: Global properties of wave B.
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and 6.11 represent the amplitudes and the lengths of wave A and wave B, in Table

5.6 we compare these values with the prediction from the QHA model. Changes of

the wave properties are predicted well by the model. This agreement indicates that

although time-space modulation is unavoidable because of the structure of the basin,

global properties of the wave field are predicted well by the QHA model.

Part III of the time-series presented in Figure 6.10 and 6.11 gives the data recorded

during the time when the probes move slowly from x = 17 m to x = 2 m. Because of

the time-space modulation, it is difficult to extract information on the wave amplitude

and the wave number as functions of x. Therefore from results of this experiment we

cannot verify the expected dynamics, e.g. the a− k relation (4.41) or the distance of

adaptation. Nevertheless, we still can compare the difference of the ’wave volume’,

aλ, at x = 2 m and at x = 17 m. As discussed in Chapter 5.3.3, the difference is 2.2%

for wave B and 9.7% for wave A. In the QHA model, the wave volume conservation

is derived from the linear theory. The amplitude of wave B is smaller than A, then

the nature of wave B is more linear than wave A. So, due to nonlinearity, error in the

conservation of wave volume must also be larger for wave A than wave B.

Now we take a look at the current. In Table 6.12 we compare the mean horizontal

velocity measured at six different depths in wave-free condition and wave-affected

condition.

Position z U (m / s)

(m) without wave with wave

−0.08 0.3030 0.2983

−0.1 0.3011 0.3086

−0.17 0.3002 0.2957

−0.2 0.3109 0.3003

−0.32 0.2958 0.2893

−0.50 0.2849 0.2727

Table 6.12: Results from Test no. 304∗. Comparison of the mean horizontal velocity,

with and without waves. CI stands for 95% confidence interval for U measured in the

absence of waves.

To get an idea of the current profile, values presented in Table 6.12 are picturized

in Figure 6.13. We conclude that globally the current decreases in the presence of

waves, in agreement with the prediction from the model.

6.5 Conclusions

Although it is more difficult to establish steady currents in a large basin (as the

one at MARIN) than in a flume, for testing models of large ocean structures or ships

this kind of basin cannot be replaced by flumes. Therefore it is worthwhile to find
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Figure 6.13: As Table 6.12, presented in a figure. The mean horizontal velocity

without wave is given by diamonds (♦), and the one affected by wave A is given by

asterisks (∗).

a model that can be used for designing a methodological way to accurately generate

waves and currents.

In Chapter 5, we show that results from the QHA model agrees with results

from various flume measurements. With the experiment reported in this chapter, we

wanted to study the behaviour of current and wave in the basin of MARIN and to

verify the applicability of the QHA model in pre-adjusting wave and current in that

basin

From this experiment we observe that the regularity of waves are destroyed by

the presence of fluctuations in the currents. The wave is not longcrested anymore.

The time-space modulation is due to the unsteadiness of the current and the non

uniformity of the current in the transversal direction.

We defined two variables that represent the global properties of the surface ele-

vation, i.e. the ensemble (time-space) averages of the significant wave height and the

wave length. We found that the values of these two variables measured in the middle

of the basin agree very well with the prediction from the model, while the ones mea-

sured near the wavemaker are close to the properties of the current-free wave. From

this observation, we conclude that it is promising to apply the model for pre-adjusting

wave and current in the basin of MARIN.
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Chapter 7

Recommendations for Further Investigations

Using the model discussed in the previous chapters, we are able to predict

the properties of wave and current after the adaptation. In this chapter we

present a discussion on the inverse problem and give some hints and directions

for further developments in dealing with irregular waves and for extending

the model to get more flexibility in describing the deformation of the current

profile.

7.1 The inverse problem

In the introduction to this dissertation we mentioned that the objective of this

research is to find a model that can be used for designing a method to generate waves

and currents in the offshore basin of MARIN. As an important step to reach this

objective, we designed a model that describes the adaptation process that is started

when a wave enters a region with current. Using this model, properties of wave and

current after the adaptation can be predicted by solving the algebraic equations (3.9),

(4.32), (4.33), and (4.41), giving the (approximate) dispersion relation, conservations

of mass and momentum density fluxes, and conservation of the wave volume. After

obtaining the steady state properties, the spatial dynamics connecting the initial and

the steady states is calculated from the conservation of energy-density flux. This

spatial dynamics describes the adaptation process. The proposed model therefore

solves the direct problem. For the interest of the wave-current generation, the inverse

problem has to be considered.

When starting with a uniform current, the inverse problem (i.e. predicting the

properties of wave and current before the adaptation) can be solved easily if we

assume that the current profile remains uniform. For this case, equations derived from

the proposed model are given in Chapter 5.3. Given the expected wave amplitude,

wave frequency, and the desired uniform current, the corresponding wave-free uniform

current can be calculated directly from the conservation of mass-density flux, while

changes of the wave properties are calculated from the algebraic equations resulting
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from the conservation of momentum-density flux, the dispersion relation, and the

kinematic boundary condition.

When dealing with depth-dependent current, the inverse problem cannot be solved

directly because the equations resulting from the conservation laws involve depth-

integration of the unknown initial current Uc (z). Nevertheless, the derived model

shows monotonicity results for the direct problem. Base on that, the inverse problem

may be found in an iterative way: take an initial guess for the wave-free current

and the current-free wave, calculate the changes of wave and current, calculate the

differences between the predicted and the desired wave and current, and then use this

information to adapt the guess for the current-free wave and the wave-free current.

7.2 Dealing with irregular waves

The model presented in the dissertation is based on the assumption that the wave

is monochromatic (regular). We have shown that the model gives good agreements

when compared to various experiments with regular waves. In practice, models of

ocean structures/ships must also be tested in random waves environments, because

in reality ocean waves are irregular. The sea surface is composed of (infinitely) many

regular waves with different lengths and frequencies. The concept of power spectrum,

which can be found in many books on signal analysis or oceanography such as Bendat

and Piersol [7] [8] or Stewart [61], is one way to describe this irregularity. The power

spectrum gives the distribution of wave energy among different wave frequencies or

wave-lengths. For random waves, it is given by a continuous function of the wave

frequency. Examples of well-known idealized spectra for ocean waves are the Pierson-

Moskowitz spectrum and the JONSWAP spectrum.

Formulating a reasonable method for dealing with irregular waves is of laboratory’s

interest. In a previous work by Margaretha [38] a model that describes the interaction

of irregular waves and a uniform current is given. Using the conservation of mass,

uniform current resulted from the interaction is predicted by assuming that the change

of the current is equal to the wave-induced mass-transport velocity given by E/cρh,

where E = area below the spectrum and c = ω/k, i.e. the phase velocity. The power

spectrum S (ω) is divided into a finite number of bands of width ∆ω. Each band is

related to a regular wave with amplitude an evaluated from the approximation:

an =
√

2S (ωn)∆ω, n = 1, 2, . . .N. (7.1)

For each band, the change of the corresponding wave amplitude is predicted using

the conservation of energy-density flux. Different from the model proposed in this

dissertation, in [38] this conservation results to an algebraic equation. In fact, using

the model given in [38] we can only predict the equilibrium state of the interaction

but we cannot predict the length of the adaptation region.

It is interesting to formulate a method for describing the interaction of currents

and irregular waves using the QHA model proposed in this dissertation, because then
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we will be able to make predictions also for cases with depth dependent currents.

The wave spectrum can be treated in the same way as above, i.e. by dividing it into

a finite number of bands; each band is related to a regular wave with amplitude an
given by (7.1). If for each of these regular waves we apply the QHA model, changes

of the wave amplitudes give the deformation of the wave spectrum. But if we do this,

we will get N predictions for the change of the current profile, and also for the change

of the mean free surface elevation and for the distance of adaptation. We have to

formulate a good averaging model to determine these three global quantities.

Another alternative for dealing with irregular waves is given as follows. Take a

regular wave that has the same energy as the irregular waves. This means that the

amplitude of the regular wave is related to the power spectrum S (ω) by

aR =

√

2

∫ ∞

0

S (ω) dω,

and the period is equal to the peak period of the irregular waves. Then we calculate

the changes of the current profile and the mean free surface elevation, the change of

the constructed regular wave above, and the distance of adaptation using the QHA

model proposed in Chapter 4. Afterward, using the current profile and the mean free

surface elevation predicted in the previous step, we calculate the deformation of the

wave spectrum as follows. We divide the spectrum into a finite number of bands,

and apply the conservation of wave volume (4.41) and the dispersion relation (3.9)

to calculate the changes of the amplitude and the wave number of each regular wave.

Finally, using the prediction for the amplitude of the corresponding regular waves,

the deformation of the wave spectrum can be calculated from (7.1).

7.3 Extension of the model

At its present stage, the QHA model proposed in this dissertation can only take

four parameters, one of which describes changes in the vertical dependence of the

current. To increase the flexibility in describing the deformation of the current profile

we need to take additional parameters, but this implies that we need more equations.

These additional equations can be constructed from the two alternatives below.

7.3.1 Vorticity-related conservation laws

Besides mass, momentum, and energy conservations, for the case that the velocity

field satisfies the continuity equation and the bottom boundary condition exactly, we

also have a balance law for the vorticity. In fact, for any continuous function G (γ) it

holds that

∂t

∫ η

−1

G (γ) dz + ∂x

∫ η

−1

uG (γ)dz =

∫ η

−1

dG

dγ

(
∂zRE1 − ∂xRE2

)
+

G (γ)|z=ηRkbc, (7.2)
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where γ is the vorticity:

γ = ∂zu− ∂xw.

If η, u, w, p are exact solutions, then the right-hand side of (7.2) vanishes. This

means that every continuous function of vorticity G (γ) is conserved. For periodic

solutions, time-averaging of (7.2) with respect to the period leads to

〈∫ η

−1

uG (γ) dz

〉
= G∞ = constant, (7.3)

where the angle brackets denotes the time-average.

Additional equations can be constructed from (7.3). Although in principle, (7.3)

holds for any continuous function G (γ), it is important to investigate which functions

G (γ) lead to physically meaningful quantities. For example, taking G (γ) = constant

leads to conservation of mass-density flux; taking G (γ) = γ leads to conservation

of vorticity-density flux; and taking G (γ) = γ2 leads to conservation of enstrophy-

density flux.

In Chapter 4 of the dissertation we show that the Green-Naghdi method leads

to conservations of mass, momentum, and energy. However, in the GN method, the

projection does not lead to conservation of vorticity-related quantities (7.3).

We have to investigate the relevance of the vorticity-related conservations to the

problem we are dealing with. For dealing with depth-dependent currents (especially

with sheared currents) it might be physically relevant.

In Chapter 5 we show that the curvature of the current profile influences the

solution of the Rayleigh equation. This is the reason why we take a parabolic function

to describe the deformation of the current profile. By having additional equations,

we will have more flexibility to model the deformation of the current profile. Depth-

dependent functions describing this deformation still have to be carefully chosen. It is

interesting to investigate whether these functions can be chosen independently from

the choice we take for G (γ).

7.3.2 Numerical codes based on the Green-Naghdi Method

A brief description of the Green-Naghdi method is given in Section 4.4.3. With

the GN method, the problem is reduced to 1D time-dependent problem. In principal,

with the GN method we can take any finite set of functions to describe changes in

the vertical dependence of the current. The wave nonlinearity can also be modelled

by the GN method; for irrotational flows, Kim et.al. [31] apply the GN method to

calculate the spatial evolution of nonlinear free surface waves.

When applying the GN method, base functions describing the vertical dependence

of the wave part of the velocity have to be chosen carefully. In [21], [22], [31] the base

functions are given by sinh (nk (z + h)), n = 1, 2, . . .N or, for deep water, exp (nkz),

n = 1, 2, . . .N . In practice, usually N is not larger than 4 or 5. For the problem
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of hydrodynamic laboratories, the wave number k varies spatially. For this case an

example of a set of base functions is given in Section 4.4.3.

In principal, the GN method offers a lot of flexibility in modelling hydrodynamic

problems. However, the most difficult problem encountered when applying the GN

method is to solve the resulting set of equations (which is as large as 2N+2). Studies

on possible simplifications and numerical methods for calculating the solutions are

interesting topics for further research.
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Appendix A

Exact Solutions and the Dispersion Relation for the

Homogeneous Problem with Piecewise-Linear Currents

The approach based on the piecewise linear current velocity approximation (e.g.

[18], [20]) reduces the problem to a set of algebraic equations. By solving these

algebraic equations, we get the exact solution of the Rayleigh equation; thus we get

the exact dispersion relation. Although as said by Shrira [57] that the convergency of

these solution to the solution of the corresponding smooth problem as the number of

vorticity jumps tends to infinity is not yet rigorously proven, this approach is simple

and practical.

Let ∆ŵk = lim
z→z+k

ŵ (z)− lim
z→z−k

ŵ (z) denote the ‘jump’ in ŵ at z = zk, k = 1, 2, . . .N.

When a current profile is approximated by a piecewise linear function (3.17), where

U (z) is continous at each kink, it is known that exact analytical solutions can be

derived by satisfying 2N matching conditions (see the book of Drazin and Reid [18]

and the paper of Gertsenshtein [20]):

∆
[
(U − c) ŵ

′ − U ′ŵ
]

k
= 0, k = 1, 2, . . .N, (A.1)

and (when [U − c]z=zk
6= 0)

∆

(
ŵ

U − c

)

k

= 0, k = 1, 2, . . .N, (A.2)

where c = ω
k . As explained in [18], the first matching condition means that the

pressure (2.20) is continuous across the interfaces, and the second matching condition
means that the normal velocity of the fluid is continuous at the interfaces. Taking

ŵ (z) =





C0 sinh (k (z − z1)) + D0 cosh (k (z − z1)) , z1 < z ≤ η0,

C1 sinh (k (z − z2)) + D1 cosh (k (z − z2)) , z2 < z ≤ z1,
...

...

CN−1 sinh (k (z − zN)) + DN−1 cosh (k (z − zN)) , zN−1 < z ≤ zN ,

CN sinh k (z + 1) , −1 ≤ z ≤ zN ,

(A.3)
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as the solution of the Rayleigh equation, the coefficients Ck and Dk are determined

from (2.27), (A.1) and (A.2).

When the current profile is given by a piecewise-linear function consisting of two

linear functions (bilinear current, i.e. N = 1), the solution of the boundary value

problem is given by (A.3) where N = 1. The parameters C0, C1, and D0 are de-

rived from (2.27), and (A.1)-(A.2). After substituting the solution ŵ into (2.25), the

dispersion relation is found:

kC̃0 cosh k (η0 − z1) + kD̃0 sinh k (η0 − z1) =

β
{
C̃0 sinh k (η0 − z1) + D̃0 coshk (η0 − z1)

}
= 0, (A.4)

where β is given by (2.26) and

C̃0 =

(
(s0 − s1) sinh (k (z1 + 1)) + k (U1 − c) cosh (k (z1 + 1))

k (z1 − η0) + (U0 − c)

)
,

D̃0 = sinh k (z1 + 1) .

Observe that the dispersion relation is not affected by the amplitude of ŵ (2.27). As

N increases, the expression for the dispersion relation inevitably becomes more and

more intricate and lengthy.
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Numerical Methods for Calculating the Eigenvalues

and Solutions of the Rayleigh Equation

B.1 Transformation to a second-order initial value problem

This discussion follows the method presented by Fenton [19] and Thomas [69].

Define ϕ (z) as follow

ϕ (z) = φ (z) /
dφ

dz
(−1) ,

and substitute into (2.22), (2.6), and (2.25). The Rayleigh equation becomes

ϕ′′ (z) − f (z)ϕ (z) = 0, (B.1)

with initial conditions

ϕ (−1) = 0

dϕ

dz
(−1) = 1. (B.2)

The surface condition corresponding to the dispersion relation is

Q (k) = 0, (B.3)

where

Q (k) = ϕ′ (0) − βϕ (0) . (B.4)

The known quantities are ω and U (z) . We regard the system (B.1)-(B.2) as one with

an unknown function ϕ and an unknown quantity k related by (B.3).

Suppose the value k = k1 is fixed a priori. With this value of k equation (B.1)

subject to initial conditions (B.2) is readily solved by a standard computer library

Runge-Kutta routine andQ (k1) is then obtained from (B.4). If another value k = k2 is

chosen, Q (k2) can be found similarly. By choosing k1 and k2 such thatQ (k1)Q (k2) <

0 the solution to Q (k) = 0 can be found iteratively using any root-bracketing method.
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In general when U (z) is sign-definite, we can find the physically-meaningful root when

the initial guess for k1 and k2 are given by

ω2 = k1 tanh k1

(
ω ∓ k2 max

z∈[−1,0]
|U (z)|

)2

= k2 tanh k2,

in which we take the minus sign if U (z) > 0 (favourable current) and the plus sign if

U (z) < 0 (adverse current). The value k1 corresponds to the zero-current wave num-

ber, and k2 is the analoguous wave number for waves running on a favourable/adverse

uniform current ±Umax = ± max
z∈[−1,0]

|U (z)| . The choice of k1 and k2 was deduced from

wavelength consideration which suggest k1 < k < k2 if the wave runs on an adverse

current, and k2 < k < k1 if the wave runs on a favourable current.

B.2 Transformation to a Riccati Equation

Define ϕ (z) as follow

ϕ (z) = φ (z) /
dφ

dz
(z) .

Observe that the following equation holds provided that the Rayleigh equation is

satisfied

ϕ′ = 1 − f (z)ϕ2, − 1 ≤ z ≤ 0. (B.5)

The initial condition is given by

ϕ (−1) = 0. (B.6)

The surface condition corresponding to the dispersion relation is transformed into

Q (k) = 1 − βϕ (0) = 0. (B.7)

Equation (B.5) has the form of a Ricatti equation, which is a nonlinear first-

order ODE. Solutions for ϕ (z) and k are obtained iteratively in the same way as the

previous method.

B.3 Finite Element Method

B.3.1 Transformation to a linear eigenvalue problem (c = ω/k is given)

We restrict the functional to a finite dimensional subspace given by

N =

{
N∑

i=0

aiξi (z)

∣∣∣∣∣ ai, i = 0..N

}
,
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in which ξi ’s are base functions. Then the restricted functional is given by

L̂ (a0, a1, . . . aN ) =
1

2

∫ 0

−1



(

N∑

i=0

aiξ
′
i (z)

)2

+ f (z)

(
N∑

i=0

aiξi (z)

)2

 dz−

1

2
β

(
N∑

i=0

aiξi (0)

)2

. (B.8)

We can take for instance linear spline functions as a simplest choice. This finite

dimensional representation of the functional must satisfy

dL̂
dai

(a0, a1, . . . aN ) = 0 for all ai. (B.9)

When f (z) and β are written using the phase speed c = ω/k like

f (z) = k2 +
U ′′ (z)

U (z) − c
, (B.10)

β =
1

(U (0) − c)
2 +

U ′ (0)

(U (0) − c)
, (B.11)

then for a given c the linear eigenvalue problem for λ = −k2 reads

Aa = −k2Ba, (B.12)

in which

a = (a0, a1, . . . aN−1)
T ,

and A and B are N ×N three-diagonal matrices, the non-zero components of which

are given by

Aij =

{ ∫ z0
z1

{
ξ′j−1ξ

′
i−1 +H (z) ξj−1ξi−1

}
dz − β, i = j = 1∫ l2

l1

{
ξ′j−1ξ

′
i−1 +H (z) ξj−1ξi−1

}
dz, j = i 6= 1 or j = i± 1

, (B.13)

Bij =

{ ∫ z0
z1
ξj−1ξi−1dz, j = i = 1∫ l2

l1
ξj−1ξi−1dz, j = i 6= 1 or j = i± 1

. (B.14)

Here

H (z) =
U ′′ (z)

U (z) − c
,

and the integration boundaries in (B.13) and (B.14) are given by

l1 = zi, l2 = zi−2, for j = i 6= 1, (B.15)

l1 = zj , l2 = zj−1, for j = i− 1, (B.16)

l1 = zj−1, l2 = zj−2, for j = i+ 1, (B.17)

Solutions for both k and a are obtained by solving the eigenvalue problem (B.12).

Notice that the task of finding k is decoupled from that of finding a.

The wavenumber k is calculated from the smallest negative eigenvalue of the ma-

trix A (B.13).
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B.3.2 Transformation to a quadratic eigenvalue problem (k is given)

When k is given instead of c (or ω), we can transform the problem into a quadratic

eigenvalue problem by first of all defining

ϕ (z) =
ŵ (z)

(kU (z) − ω)
. (B.18)

Substuting (B.18) into (3.1) and applying some partial derivatives gives the following

functional for ϕ

G (ϕ) =
1

2

∫ 0

−1

(kU (z) − ω)
2
{
(ϕ′)

2
+ k2ϕ2

}
dz − 1

2
k2ϕ (0)

2
.

This variational formulation is already given in (Miles [46]) (assuming that U ′ (0) = 0).

Notice that this formulation actually holds also for cases in which U ′ (0) 6= 0.

When ϕ (z) is given by

ϕ (z) =

N−1∑

i=0

biξi (z) ,

in which ξi (z) ’s are the base functions for the finite element method, observe that

the resulting matrix equation is given by

(
P + ωQ+ ω2R

)
b = 0,

where b = (b0,b1, . . . , bN−1)
T

and P, Q, and R are N × N three-diagonal matrices

which have non-zero elements:

Pij =

{ ∫ z0
z1
k2U (z)2

{
ξ′j−1ξ

′
i−1 + k2ξj−1ξi−1

}
dz − k2, i = j = 1∫ l2

l1
k2U (z)

2 {
ξ′j−1ξ

′
i−1 + k2ξj−1ξi−1

}
dz, j = i 6= 1 or j = i± 1

,

Qij =

{
−2
∫ z0
z1
kU (z)

{
ξ′j−1ξ

′
i−1 + k2ξj−1ξi−1

}
dz, i = j = 1

−2
∫ l2
l1
kU (z)

{
ξ′j−1ξ

′
i−1 + k2ξj−1ξi−1

}
dz, j = i 6= 1 or j = i± 1

,

Rij =

{ ∫ z0
z1

{
ξ′j−1ξ

′
i−1 + k2ξj−1ξi−1

}
dz, i = j = 1∫ l2

l1

{
ξ′j−1ξ

′
i−1 + k2ξj−1ξi−1

}
dz, j = i 6= 1 or j = i± 1

,

where the integration boundaries are given by (B.15)-(B.17).

A method to solve the quadratic eigenvalue problem is given by Tisseur [72].
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Samenvatting

Dit proefschrift betreft de studie van oppervlaktegolven op een laag vloeistof

waarin een stroming aanwezig is. In het bijzonder leiden we een model af dat het

aanpassingsproces beschrijft als een gegeven oppervlaktegolf op een zekere plaats een

stroming ontmoet. Dan zullen zowel de golf als de stroming beginnen te veranderen

om zich aan te passen om een stabiele toestand te bereiken. Voor de gebruikelijke

taak voor een hydrodynamisch laboratorium om een gewenste golf boven een gegeven

stroming te genereren, kan dit model helpen bij de praktische generatie door de eigen-

schappen van de golven en stroming vr de aanpassing te bepalen.

We zullen ons beperken tot golven met kleine amplitudes; daarvoor geldt dan dat

voor elk stromingsprofiel een harmonische golf met gegeven frequentie aan de stro-

ming is aangepast als aan de dispersierelatie wordt voldaan. Deze dispersierelatie is

algemeen bekend in de afwezigheid van stromingen, maar is tamelijk ingewikkeld in

de aanwezigheid van diepte-afhankelijke niet-lineaire stromingen. Om in die gevallen

de dispersierelatie te vinden moet de vergelijking voor de verticale snelheid van de

vloeistof in de laag, de zogenoemde Rayleigh-vergelijking die afhangt van de gegeven

stroming, opgelost worden. In het algemeen kan geen analytische oplossingen gevon-

den worden en moet de oplossing benaderd worden, hetgeen leidt tot een benaderde

dispersierelatie. In dit proefschrift wordt de benadering verkregen door een vari-

ationele karakterisering van de dispersierelatie te gebruiken. Het substitueren van

benaderde oplossingen van de Rayleigh-vergelijking in de relevante functionaal leidt

dan tot de benaderde dispersierelatie. We laten zien dat het gebruik van de WKB

benaderingen voor oplossingen van de Rayleigh-vergelijking leidt tot een goede be-

nadering van de dispersierelatie voor stromingen met niet-lineaire profielen.

Nu we op deze manier de steady states van monochromatische golven op willekeurige

stromingen hebben geformuleerd, bekijken we het probleem wanneer een golf en een

stroming elkaar op een bepaalde plaats ontmoeten. Op die positie wordt dan niet

voldaan aan de dispersierelatie, en een aanpassingsproces begint. Er wordt een

model ontworpen dat een quasi-homogene ruimtelijke ontwikkeling beschrijft naar

een asymptotische toestand waarin de veranderde golf en stroming weer steady zijn.

Om fysisch begrip van het adaptatieproces te krijgen, hebben we een laagdi-

mensionaal model ontworpen dat gebruik maakt van duidelijk interpreteerbare vari-

abelen. De natuurlijke variabelen die de golf beschrijven zijn de golffrequentie, de
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golflengte, de golfamplitude en de gemiddelde vrije oppervlakte verhoging. Om ve-

randeringen in de stroming te beschrijven hebben we er voor gekozen om benaderde,

geparameteriseerde, profielen te gebruiken; veranderingen in de stroming worden

dan beschreven door veranderingen in de parameters. Het adaptatiemodel wordt

dan verkregen door te eisen dat aan verschillende natuurlijke behoudseigenschappen

wordt voldaan. Meer specifiek zullen we er voor zorgen dat op elke positie exact

wordt voldaan aan de continuteitsvergelijking en de kinematische randvoorwaarde.

Bovendien eisen we dat de tijdgemiddelde flux van massa, impuls en energie worden

behouden. Deze voorwaarden maken het mogelijk om de ruimtelijke veranderingen

van de parameters van het model te definiren, en de waarden van de asymptotische

toestand te voorspellen. Het afgeleide quasi-homogene proces is slechts een benaderde

beschrijving, maar we onderzoeken a-priori schattingen en laten zien dat de fouten

klein zijn. Om het model te valideren hebben we modelresultaten vergeleken met

laboratorium experimenten die in de literatuur gevonden kunnen worden. Daarnaast

werd een serie testen ontworpen en uitgevoerd in het offshore basin van MARIN,

het Maritime Research Institute Netherlands, Wageningen. Vergelijking met resul-

taten van alle beschikbare experimenten in flumes en basins, toont in alle gevallen

dat het model de kwalitatieve resultaten van het interactieproces correct voorspelt,

en dat voor veel experimenten, inclusief die bij het MARIN, de voorspellingen ook

kwantitatief correct zijn.
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